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A more general abstract result....

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Evolution equations & Wasserstein distance

Evolution PDEs of diffusive type and the
Wasserstein distance

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Evolution equations & Wasserstein distance

Evolution PDEs of diffusive type and the
Wasserstein distance

Orp — div (pV(iﬁ)) =0 (x,t) €R" x (0,+00),

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Evolution equations & Wasserstein distance

Evolution PDEs of diffusive type and the
Wasserstein distance

Orp — div (pV(iﬁ)) =0 (x,t) €R" x (0,+00),

L(p) = /" L(x, p(x), Vp(x))dx (Integral functional)

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Evolution equations & Wasserstein distance

Evolution PDEs of diffusive type and the
Wasserstein distance

Orp — div (pV(iﬁ)) =0 (x,t) €R" x (0,+00),

L(p) = /" L(x, p(x), Vp(x))dx (Integral functional)

L=1L(x,p,Vp): R" x (0,400) x R" = R (Lagrangian)
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Evolution equations & Wasserstein distance

Evolution PDEs of diffusive type and the

Wasserstein distance

Orp — div (pV(iﬁ)) =0 (x,t) €R" x (0,+00),

L(p) =
oL .
= 0,L(x,p,Vp) — div(0v,L(x,p, Vp))

op

/ L(x, p(x), Vp(x))dx (Integral functional)
Rn
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Evolution equations & Wasserstein distance

Evolution PDEs of diffusive type and the
Wasserstein distance

Bep — div (pv %)) =0 (x,t) €R" x (0, +00),
p(x,t) >0,  [p.p(x,t)dx =1 Y (x,t) € R" x (0, +00),
Jan IXPp(x,t)dx < +00 V>0,

L(p) = /" L(x, p(x), Vp(x))dx (Integral functional)

5L

5 = ,L(x, p, Vp) — div(dv,L(x, p, Vp))
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Evolution PDEs of diffusive type and the
Wasserstein distance

Bep — div (pV(%)) =0 (x,t) €R" x (0, +00),
p(x,t) >0, [e.p(x,t)dx =1 V(x,t) € R" x (0, +00),
Jan IXPp(x,t)dx < +00 Vit >0,

For t fixed, identify p(-, t)
with the probability measure p; := p(-, t)dx

then £ can be considered as defined on &% (R")
(the space of probability measures on R” with finite second moment)
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Evolution PDEs of diffusive type and the
Wasserstein distance

Bep — div (pV(%)) =0 (x,t) €R" x (0, +00),
p(x,t) >0, [e.p(x,t)dx =1 V(x,t) € R" x (0, +00),
Jan IXPp(x,t)dx < +00 Vit >0,

OTTO, JORDAN & KINDERLEHRER and OTTO ['97-'01]
showed that this PDE can be interpreted as
the gradient flow of £ in Z2,(R")
w.r.t. the Wasserstein distance W5 on Z2,(R")
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Ex.1: The potential energy functional
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Evolution equations & Wasserstein distance

Examples

Ex.1: The potential energy functional

Li(x,p, Vp) = Li(x, p) = pV(x),

Li(p) = /" V(x)p(x) dx, {5C1 = 0,L1(x,p) = V(x),
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

o= [Lvense {300

Orp — div(pVV) =0
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Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.2: The entropy functional
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Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.2: The entropy functional

La(p) = / () tog(p(x) dx
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.2: The entropy functional

R Rt Sk I
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.2: The entropy functional

e = s (G

9ep — div(pV(log(p) + )) =0
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

The entropy functional ~~ The heat equation

R Rt Sk I

Oep—ADp=0

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.3: The internal energy functional
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.3: The internal energy functional

/n M(x)dx, m#1
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.3: The internal energy functional

m

,m—1" 5ﬁ3—aL3():L -1
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.3: The internal energy functional

/ (x) dx, Ls(x,p,Vp) = 710",
,m—1" 5ﬁ3—aL3():L -1

Op — div(pv—) =0
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

The internal energy functional ~~ The porous media equation

/ (x) dx, Ls(x,p,Vp) = 710",
,m—1" 5ﬁ3—aL3():L -1

Orp — Ap™ =0 OO '01
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.4: The (Entropy+ Potential) energy functional
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.4: The (Entropy+ Potential) energy functional

La(p) = / (o) og(p(x)) + p()V () dx
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.4: The (Entropy+ Potential) energy functional

La(x, p, Vp) = plog(p) + pV(x),

La(p) == /Rn(p log(p)+pV), {51:4 = 0,L4(x, p) = log(p) + 1+ V(x),
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Ex.4: The (Entropy+ Potential) energy functional

o La(x, p, Vp) = plog(p) + pV(x),
La(p) = /Rn(plog(p)erV% {m — 9, La(x, p) = log(p) + 1+ V(x),

Orp — div(pV(log(p) +1+ V)) =0
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Evolution equations & Wasserstein distance

Examples

The potential energy functional ~~ The linear transport equation

ot fLvevnse {500

Orp — div(pVV) =0

Entropy+Potential ~~ The Fokker-Planck equation

o La(x, p, Vp) = plog(p) + pV(x),
La(p) = /Rn(plog(p)erV% {m — 9,La(x, p) = log(p) + 1+ V(x),

Orp — Ap — div(pVV) =0 JORDAN-KINDERLEHRER-OTTO '97
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Evolution equations & Wasserstein distance

Fourth order examples

Ex.5: The Dirichlet integral
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Evolution equations & Wasserstein distance

Fourth order examples

Ex.5: The Dirichlet integral

L5(o) = / V0P dx
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Evolution equations & Wasserstein distance

Fourth order examples

Ex.5: The Dirichlet integral

1 L X,p7vp :L p :lvp27
o) = 3 [ 19 {;ﬁg_ 70 = L) = 37
! 5p )
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Evolution equations & Wasserstein distance

Fourth order examples

The Dirichlet integral ~~ The thin film equation

1 L X,p7vp :L p :lvp27
o) = 3 [ 19 {;ﬁg_ 70 = L) = 37
! 5p )

Orp + div(pVAp) =0 OrTO 98
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Evolution equations & Wasserstein distance

Fourth order examples

The Dirichlet integral ~~ The thin film equation

1

L X7p7vp :L p:lvp27
Ls(p) =3 RH|VP(X)|2dX, {525 ) = Ls(p) = 3|Vp

W = _Ap7
Orp+ (pVAp) =0 OTtro '98

Ex.6: The Fisher information
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Evolution equations & Wasserstein distance

Fourth order examples

The Dirichlet integral ~~ The thin film equation

1 L X,p7vp :L p :lvp27
o) = 3 [ 19 {;ﬁg_ 70 = L) = 37
! 5p )

Orp+ (pVAp) =0 OTtro '98

Ex.6: The Fisher information

Lalp)i=5 | 'V[f’((j)" dx =5 [ I7oa(p0) )
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Evolution equations & Wasserstein distance

Fourth order examples

Ls(p) == 2 ) [Vp(x)[? dx, {5£5 _

Le(p)

Riccarda Rossi

The Dirichlet integral ~~ The thin film equation

1 Ls(x, p, Vp) = Ls(p) = 5|Vp|?,

Orp+ (pVAp) =0 OTtro '98

Ex.6: The Fisher information

1 Ls(x, p, Vp) = [V log(p)|? p,
= §/|V|og(p)|2p {5&, — _oAve
op T VP
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Evolution equations & Wasserstein distance

Fourth order examples

The Dirichlet integral ~~ The thin film equation

1 L X,p7vp :L p :lvp27
o) = 3 [ 19 {;ﬁg_ 70 = L) = 37
! 5p )

Orp+ (pVAp) =0 OTtro '98
Ex.6: The Fisher information
1 Ls(x, p, Vp) = [V log(p)|? p,
Lalp) = [ 19Ioelo) § st 0
2 5 = 25

A
Orp + 2div (pV (ﬁ>> =0 GIANAZZA-SAVARE-TOSCANI 2006

{4
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Evolution equations & Wasserstein distance

Fourth order examples

The Dirichlet integral ~~ The thin film equation

1 L X,p7vp :L p :lvp27
o) = 3 [ 19 {;ﬁg_ 70 = L) = 37
! 5p )

Orp+ (pVAp) =0 OTtro '98

The Fisher information ~~ Quantum drift diffusion equation

1 Le(x, p. Vp) = |V log(p)[* p.
Le(p) = §/|V|0g(p)|2p {5&» PN/,
op T VP

A
Op + 2div (pV (ﬁ)) =0 GIANAZZA-SAVARE-TOSCANI 2006
D
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Evolution equations & Wasserstein distance

New insight

e This gradient flow approach has brought several developments in:
» approximation algorithms

» asymptotic behaviour of solutions (new contraction and energy
estimates) ([Otto’01]: the porous medium equation)

» applications to functional inequalities (Logarithmic Sobolev
inequalities < trends to equilibrium a class of diffusive PDEs) .....

[AGUEH, BRENIER, CARLEN, CARRILLO, DOLBEAULT, GANGBO,
GHOUSSOUB, MCCANN, OTTO, VAZQUEZ, VILLANL..
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Evolution equations & Wasserstein distance

Wasserstein spaces

> the space of Borel probability measures on R"” with finite second
moment

PH(R™) = {,u probability measures on R" : / Ix|2 dpu(x) < +oo}
Rn
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Evolution equations & Wasserstein distance

Wasserstein spaces

> the space of Borel probability measures on R"” with finite second
moment

PH(R™) = {,u probability measures on R" : Ix|2 dpu(x) < +oo}
Rn

> Given ug, tip € Z(R"), a transport plan between 11 and puy is a
measure g € PH(R" x R™) with marginals p; and pp, i.e.

Tigb = f1, Togb = U2

I(p1, 12) is the set of all transport plans between i and po.
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Evolution equations & Wasserstein distance

Wasserstein spaces

> the space of Borel probability measures on R"” with finite second
moment

PH(R™) = {,u probability measures on R" : Ix|2 dpu(x) < +oo}
Rn
> Given ug, tip € Z(R"), a transport plan between 11 and puy is a
measure g € PH(R" x R™) with marginals p; and pp, i.e.

Tigb = f1, Togb = U2

I(p1, 12) is the set of all transport plans between i and po.
» The (squared) Wasserstein distance between p; and p; is

W3 )= min{ [ b yPantey) s e M) |
R xR
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Evolution equations & Wasserstein distance

Wasserstein spaces
Given p > 1
» the space of Borel probability measures on R"” with finite
pth-moment

Z,R") = {u probability measures on R" : / [x]P du(x) < Jroo}
Rn

> Given p1, 12 € Z,(R"), a transport plan between 1 and po is a
measure p € Z,(R" x R") with marginals p; and py, i.e.

Mg = M1, T2glb = (2

I(p1, 2) is the set of all transport plans between iy and pp.
» The (pth-power of the) p-Wasserstein distance between p; and p;
is

wenope) = min [ x =yl dutey) s we o)}
R xRR"
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Evolution equations & Wasserstein distance

Wasserstein spaces
Given p > 1
» the space of Borel probability measures on R"” with finite
pth-moment

Z,R") = {u probability measures on R" : / [x]P du(x) < Jroo}
Rn
> Given p1, 12 € Z,(R"), a transport plan between 1 and po is a
measure p € Z,(R" x R") with marginals p; and py, i.e.

Tigb = M1, Tl = M2
I(p1, 2) is the set of all transport plans between iy and pp.

» The (pth-power of the) p-Wasserstein distance between p; and p;
is

wenope) = min [ x =yl dutey) s we o)}
’7>< n

» the Wasserstein distance is tightly related with the
Monge-Kantorovich optimal mass transportation problem.
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Evolution equations & Wasserstein distance

Towards metric spaces

> the metric space (Z2,(R"), W,) is not a Riemannian manifold.
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Towards metric spaces
> the metric space (Z2,(R"), W,) is not a Riemannian manifold.

(In [JORDAN-KINDERLEHRER-OTTO '97] Fokker-Planck equation

interpreted as a gradient flow by switching to the steepest descent,
discrete time formulation)....
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Towards metric spaces

> the metric space (Z2,(R"), W,) is not a Riemannian manifold.
(In [JORDAN-KINDERLEHRER-OTTO '97] Fokker-Planck equation
interpreted as a gradient flow by switching to the steepest descent,
discrete time formulation)....

» However, OTTO develops formal Riemannian calculus in
Wasserstein spaces to provide heuristical proofs of qualitative
properties (eg., asymptotic behaviour) of Wasserstein gradient flows
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Towards metric spaces

> the metric space (Z2,(R"), W,) is not a Riemannian manifold.
(In [JORDAN-KINDERLEHRER-OTTO '97] Fokker-Planck equation
interpreted as a gradient flow by switching to the steepest descent,
discrete time formulation)....

» However, OTTO develops formal Riemannian calculus in
Wasserstein spaces to provide heuristical proofs of qualitative
properties (eg., asymptotic behaviour) of Wasserstein gradient flows

> rigorous proofs through technical arguments, based on the

“classical” theory and regularization procedures, and depending on
the specific case..

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Evolution equations & Wasserstein distance

Towards metric spaces

> the metric space (Z2,(R"), W,) is not a Riemannian manifold.
(In [JORDAN-KINDERLEHRER-OTTO '97] Fokker-Planck equation
interpreted as a gradient flow by switching to the steepest descent,
discrete time formulation)....

» However, OTTO develops formal Riemannian calculus in
Wasserstein spaces to provide heuristical proofs of qualitative
properties (eg., asymptotic behaviour) of Wasserstein gradient flows

> rigorous proofs through technical arguments, based on the

“classical” theory and regularization procedures, and depending on
the specific case..

Metric spaces are a suitable framework for rigorously interpreting
diffusion PDE as gradient flows in the Wasserstein spaces in the full
generality.
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Evolution equations & Wasserstein distance

Gradient flows in metric spaces

In [Gradient flows in metric and in the Wasserstein spaces
AMBROSIO, GIGLI, SAVARE "05]:
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Gradient flows in metric spaces

In [Gradient flows in metric and in the Wasserstein spaces
AMBROSIO, GIGLI, SAVARE "05]:

e refined existence, approximation, uniqueness, long-time behaviour
results for general

Gradient Flows in Metric Spaces
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Evolution equations & Wasserstein distance

Gradient flows in metric spaces

In [Gradient flows in metric and in the Wasserstein spaces
AMBROSIO, GIGLI, SAVARE "05]:

e refined existence, approximation, uniqueness, long-time behaviour
results for general
Gradient Flows in Metric Spaces

Approach based on the theory of Minimizing Movements & Curves of
Maximal Slope [DE GIorRGI, MARINO, TOSQUES, DEGIOVANNI, AMBRO-
s10.. '80~'90]
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Evolution equations & Wasserstein distance

Gradient flows in metric spaces

In [Gradient flows in metric and in the Wasserstein spaces
AMBROSIO, GIGLI, SAVARE "05]:

e refined existence, approximation, uniqueness, long-time behaviour
results for general
Gradient Flows in Metric Spaces
e The applications of these results to gradient flows in Wasserstein spaces
are made rigorous through development of a “differential /metric calcu-
lus” in Wasserstein spaces:
» notion of tangent space and of (sub)differential of a functional on
Zp(R")
» calculus rules
» link between the weak formulation of evolution PDEs and their
formulation as a gradient flow in ZZ,(R")

Riccarda Rossi
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Evolution equations & Wasserstein distance

Gradient flows in metric spaces

In [Gradient flows in metric and in the Wasserstein spaces
AMBROSIO, GIGLI, SAVARE "05]:

e refined existence, approximation, uniqueness, long-time behaviour
results for general
Gradient Flows in Metric Spaces

e In [R., SAVARE, SEGATTI, STEFANELLI'06]: complement the AMBRO-
s10, GIGLI, SAVARE's results on the long-time behaviour of Curves of
Maximal Slope
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Curves of Maximal Slope

Gradient flows in metric spaces: heuristics

Data:

» A complete metric space (X, d),

> a proper functional ¢ : X — (—00, +0]
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Curves of Maximal Slope

Gradient flows in metric spaces: heuristics

Data:

» A complete metric space (X, d),

> a proper functional ¢ : X — (—00, +0]

Problem:
How to formulate the gradient flow equation

() = =Ve(u(t)), te(0,T)

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Curves of Maximal Slope

Gradient flows in metric spaces: heuristics

Data:

» A complete metric space (X, d),

> a proper functional ¢ : X — (—00, +0]

Problem:
How to formulate the gradient flow equation

() = =Ve(u(t)), te(0,T)

in absence of a natural linear or differentiable structure on X7
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Curves of Maximal Slope

Gradient flows in metric spaces: heuristics

Data:

» A complete metric space (X, d),

> a proper functional ¢ : X — (—00, +0]

Problem:
How to formulate the gradient flow equation

() = =Ve(u(t)), te(0,T)

in absence of a natural linear or differentiable structure on X7

To get some insight, let us go back to the euclidean case...
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Curves of Maximal Slope

Gradient flows in metric spaces: heuristics

Given a proper (differentiable) function ¢ : R" — (—o0, +00]

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Curves of Maximal Slope

Gradient flows in metric spaces: heuristics
Given a proper (differentiable) function ¢ : R" — (—o0, +00]

u'(t) = =V(u(t))
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Curves of Maximal Slope

Gradient flows in metric spaces: heuristics
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Given a proper (differentiable) function ¢ : R" — (—o0, +00]

u'(t) = =Ve(u(t)) & [u'(t) + Ve(u(t)? =0
& | ()7 +[Vo(u(t)? +2(u/(t), Vo(u(t))) = 0

& | ()P +[Ve(u(t) + 2%¢(U(t)) =0

So we get the equivalent formulation:

d 1 ! 2 1 2
2 0() = =3[ (8) = 5| Vo (u(1))]

This involves
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Gradient flows in metric spaces: heuristics
Given a proper (differentiable) function ¢ : R" — (—o0, +00]

u'(t) = =Ve(u(t)) & [u'(t) + Ve(u(t)? =0
& | ()7 +[Vo(u(t)? +2(u/(t), Vo(u(t))) = 0

& | ()P +[Ve(u(t) + 2%¢(U(t)) =0

So we get the equivalent formulation:

1

d PPUNT I 2
9 g(u(e) = ~2 /(O = 2Vo(u(e)

This involves the modulus of derivatives, rather than derivatives,
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Gradient flows in metric spaces: heuristics
Given a proper (differentiable) function ¢ : R" — (—o0, 400]
u'(t) = =Ve(u(t)) & [u'(t) + Vo(u(t)? =0
& [u'(t)] + [Vo(u(t))]” + 2(u'(t), Vo(u(t))) = 0
& |u'(1)]? +[Ve(u(t)? + 2%¢>(U(t)) =0
So we get the equivalent formulation:

1

d PPUNT I 2
9 g(u(e) = ~2 /(O = 2Vo(u(e)

This involves the modulus of derivatives, rather than derivatives, hence
it can make sense in the setting of a metric space!
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Gradient flows in metric spaces: heuristics
Given a proper (differentiable) function ¢ : R" — (—o0, +00]

u'(t) = =Ve(u(t)) & [u'(t) + Ve(u(t)? =0
& | ()7 +[Vo(u(t)? +2(u/(t), Vo(u(t))) = 0

& WO + Va(O) + 25 6(u(t) =0

So we get the equivalent formulation:

1

d / 2 1 | 2
Zo(u(e) = —31u/ (&) = Z|Vo(u(t))

This involves the modulus of derivatives, rather than derivatives, hence
it can make sense in the setting of a metric space!
We introduce suitable “surrogates” of (the modulus of) derivatives.

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Curves of Maximal Slope

Metric derivatives
e Setting: A complete metric space (X, d)

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Curves of Maximal Slope

Metric derivatives
e Setting: A complete metric space (X, d)

Metric derivative & geodesics

Given an absolutely continuous curve u: (0, T) — X (v € AC(0, T; X)),
its metric derivative is defined by

|u'|(t) :== I|7i_r>n0 ‘W

(@~ [|(2)),

fora.e.t €(0,T),

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Curves of Maximal Slope

Metric derivatives
e Setting: A complete metric space (X, d)

Metric derivative & geodesics

Given an absolutely continuous curve u: (0, T) — X (v € AC(0, T; X)),
its metric derivative is defined by

|(8) = tim 00 Ut + 1))

Jim m fora.e.t €(0,T),

(I’ ()|l ~ |¢'|(t)), and satisfies

d(u(s), u(t)) < /t W|()dr Yo<s<t<T.
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Metric derivatives
e Setting: A complete metric space (X, d)

Metric derivative & geodesics

Given an absolutely continuous curve u: (0, T) — X (v € AC(0, T; X)),
its metric derivative is defined by

|(8) = tim 00 Ut + 1))

Jim m fora.e.t €(0,T),

(I’ ()|l ~ |¢'|(t)), and satisfies
(s u(0) < [ WI()ar voss<e<T.

A curve u is a (constant speed) geodesic if

d(u(s), u(t)) = |t — s||u/| Vs, te[o,1].
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Slopes
e Setting: A complete metric space (X, d)
Local slope

Given a proper functional ¢ : X — (—o0,400] and u € D(¢), the local
slope of ¢ at v is

|0¢| (1) := limsup M

v d(U, V) ue D(¢)
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Slopes
e Setting: A complete metric space (X, d)
Local slope

Given a proper functional ¢ : X — (—o0,400] and u € D(¢), the local
slope of ¢ at v is

1061 (u) = lim sup W

(I = Vo)l ~ [0¢] (u))-

u e D(o)
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Slopes

e Setting: A complete metric space (X, d)

Local slope

Given a proper functional ¢ : X — (—o0,400] and u € D(¢), the local
slope of ¢ at v is

1061 (u) = lim sup W

(I = Vo)l ~ [0¢] (u))-

u e D(o)

To fix ideas

Suppose that X is a Banach space B, and ¢ : B — (—o0, +oq] is |.s.c.
and convex (or a Cl-perturbation of a convex functional), with
subdifferential (in the sense of Convex Analysis) d¢. Then

0] (u) = min{[[¢]lz: : & € 0p(u)}  Vue D(¢)
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Slopes

e Setting: A complete metric space (X, d)

Local slope

Given a proper functional ¢ : X — (—o0,400] and u € D(¢), the local
slope of ¢ at v is

1061 (u) = lim sup W

(I = Vo)l ~ [0¢] (u))-

u e D(o)

Definition: chain rule

The local slope satisfies the chain rule if for any absolutely continuous
curve v : (0, T) — D(¢) the map t — (¢po)v(t) is absolutely
continuous and satisfies

%qb(v(t)) > —|V'|(t) |00 (v(t)) fora.e.t € (0,T).
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Definition of Curve of Maximal Slope (w.r.t. the
local slope)

(2-)Curve of Maximal Slope

We say that an absolutely continuous curve u: (0, T) — X is a
(2-)curve of maximal slope for ¢ (w.r.t. the local slope) if
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Definition of Curve of Maximal Slope (w.r.t. the
local slope)

(2-)Curve of Maximal Slope

We say that an absolutely continuous curve u: (0, T) — X is a
(2-)curve of maximal slope for ¢ (w.r.t. the local slope) if

d 1 /12 1 2 :
Spou(t)) = =5 [u7(t) = 510¢]"(u(t)) ae.in (0, T).
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Definition of Curve of Maximal Slope (w.r.t. the
local slope)

(2-)Curve of Maximal Slope

We say that an absolutely continuous curve u: (0, T) — X is a
(2-)curve of maximal slope for ¢ (w.r.t. the local slope) if

d 1 1 .
L o(u(t) = 5o (t) - 3100P(u(r)) ae in (0,T)
o If |0¢| satisfies the chain rule, it is sufficient to have

& p(u(e)< — o1/ P(0) ~ 3106P(u(t) ae.in (0.T)
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Definition of p-Curve of Maximal Slope

Consider p, g € (1, 4+00) with % + % =1
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p-Curve of Maximal Slope

We say that an absolutely continuous curve u: (0, T) — X is a
p-curve of maximal slope for ¢ if
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Definition of p-Curve of Maximal Slope

Consider p, g € (1, 4+00) with % + % =1.

p-Curve of Maximal Slope

We say that an absolutely continuous curve u: (0, T) — X is a
p-curve of maximal slope for ¢ if

d I I _
g P = —_u17(8) = _1001%(u(t))  a.ein (0, 7).
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Definition of p-Curve of Maximal Slope

Consider p, g € (1, 4+00) with % + % =1.

p-Curve of Maximal Slope

We say that an absolutely continuous curve u: (0, T) — X is a
p-curve of maximal slope for ¢ if

d I I _
g P = —_u17(8) = _1001%(u(t))  a.ein (0, 7).

o If |0¢| satisfies the chain rule, it is sufficient to have

SN~ P(0) - T0(u(e) ae.in (0.T).
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Curves of Maximal Slope

To fix ideas...

> 2-curves of maximal slope in 9%,(R") lead (for a suitable ¢) to the
linear transport equation

Orp — div(pVV) =0
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Curves of Maximal Slope

To fix ideas...

> 2-curves of maximal slope in 9%,(R") lead (for a suitable ¢) to the
linear transport equation

Orp — div(pVV) =0

> p-curves of maximal slope in &Z,(IR") lead (for a suitable ¢) to a
nonlinear version of the transport equation

Oep =V - (pig(VV)) =0

- ( ) |r‘q_2r r ?é Oa
r) =
Ja 0 r=o,
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Approximation of p—curves of maximal slope

Given an initial datum vy € X, does there exist a p—curve of maximal
slope u on (0, T) fulfilling u(0) = ue?
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Existence is proved by passing to the limit in an approximation scheme
by time discretization
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Existence is proved by passing to the limit in an approximation scheme
by time discretization

» Fix time step 7 >0 ~» partition & of (0, T)
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Approximation of p—curves of maximal slope

Existence is proved by passing to the limit in an approximation scheme
by time discretization

» Fix time step 7 >0 ~» partition & of (0, T)

» Discrete solutions u®, ul, ..., uN: solve recursively

1
Ug € Argminuex{idp(uﬂ Uzil) + ¢(U)}, U?_ ‘= Uo
pT

For simplicity, we take p = 2.
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Approximation of p—curves of maximal slope

Existence is proved by passing to the limit in an approximation scheme
by time discretization

» Fix time step 7 >0 ~» partition & of (0, T)

» Discrete solutions u®, ul, ..., uN: solve recursively

1
U: € Argminuex{idp(uﬂ Ufl) + ¢(U)}, U?_ ‘= Uo
pT
For simplicity, we take p = 2.

This variational formulation of the implicit Euler scheme still makes
sense in a purely metric framework
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Approximation of p—curves of maximal slope

Existence is proved by passing to the limit in an approximation scheme
by time discretization

» Fix time step 7 >0 ~» partition & of (0, T)

» Discrete solutions u®, ul, ..., uN: solve recursively

1
U: € Argminuex{idp(uﬂ Ufl) + ¢(U)}, U?_ ‘= Uo
pT
For simplicity, we take p = 2.

This variational formulation of the implicit Euler scheme still makes
sense in a purely metric framework Sufficient conditions on ¢ for the
minimization problem:

» ¢ lower semicontinuous;

> ¢ coercive (¢ has compact sublevels)
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Passage to the limit

» Approximate solutions: piecewise constant interpolants u, of
{u7} o on 2,

» Approximate energy inequality:

3 | w2 st} [ 0P (9)ds olun() < oun) Ve e 0. 7]
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Passage to the limit

» Approximate solutions: piecewise constant interpolants u, of
{u7} o on 2,

» Approximate energy inequality:

3 | w2 st} [ 0P (9)ds olun() < oun) Ve e 0. 7]

» whence

v’ a priori estimates

v/ compactness (via a metric version of the
Ascoli-Arzela theorem): a subsequence {u,, }
converges to a limit curve u
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Passage to the limit

By lower semicontinuity, we pass to the limit in the approximate energy
inequality Vt € [0, T]

3 [ l7ds + 5 [ 00 () ds + 60 (0) < o)
¢

1 ‘ / 2 1 t- . 2
3 | 116 ds 5 [ timinf 90 (5)) ds + 6ul0) < o)
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Passage to the limit

By lower semicontinuity, we pass to the limit in the approximate energy
inequality Vt € [0, T]

3 [ l7ds + 5 [ 00 () ds + 60 (0) < o)
¢
1 ‘ / 2 1 t- . 2
3 | 116 ds 5 [ timinf 90 (5)) ds + 6ul0) < o)

It is natural to introduce the relaxed slope
|07 ¢|(u) := inf {Iin%inf |06](up) = un — u, supP(u,) < —I—oo}
njioo n

i.e. the lower semicontinuous envelope of the local slope.
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Passage to the limit

By lower semicontinuity, we pass to the limit in the approximate energy
inequality for all t € [0, T]

3 [ l7ds + 5 [ 00 () ds + 60 (0) < o)

/|u'| Pds+ = /\a 62(u(s)) ds + o(u(t)) < é(uo)

It is natural to introduce the relaxed slope

|0~ ¢|(u) := inf {Iir’?inf|8¢|(un) DUy — u supP(u,) < +oo}

i.e. the lower semicontinuous envelope of the local slope.
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Conclusion

Suppose that the relaxed slope |0~ ¢| satisfies the chain rule

S ou(®) < |\(6) |97 0] (u(t)) forae.t e (0.T).
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Conclusion

Suppose that the relaxed slope |0~ ¢| satisfies the chain rule

S ou(®) < |\(6) |97 0] (u(t)) forae.t e (0.T).

Then

3 [l as+ 3 [ 107 6P s < o(w) - s(u(e)

< [ 1i6s) oo (u(s)) s
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Curves of Maximal Slope

Conclusion

Suppose that the relaxed slope |0~ ¢| satisfies the chain rule

S ou(®) < |\(6) |97 0] (u(t)) forae.t e (0.T).

whence
d 1 112 1., 12 .
G ou(t) = =3 [u(t) = 51070 (u(t)) ae.in (0, T),

i.e. uis a curve of maximal slope w.r.t. [0~ ¢|.
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An existence result

Theorem [Ambrosio-Gigli-Savaré '05]
Suppose that
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Theorem [Ambrosio-Gigli-Savaré '05]
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> ¢ is lower semicontinuous
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An existence result

Theorem [Ambrosio-Gigli-Savaré '05]
Suppose that
> ¢ is lower semicontinuous

> ¢ is coercive
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An existence result

Theorem [Ambrosio-Gigli-Savaré '05]
Suppose that

> ¢ is lower semicontinuous

> ¢ is coercive

> the relaxed slope |0~ ¢| satisfies the chain rule.
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Curves of Maximal Slope

An existence result

Theorem [Ambrosio-Gigli-Savaré '05]
Suppose that

> ¢ is lower semicontinuous

> ¢ is coercive

> the relaxed slope |0~ ¢| satisfies the chain rule.

Then, for all ug € D(¢) there exists a p-curve of maximal slope u for ¢
(w.r.t. the relaxed slope |0~ ¢|), fulfilling u(0) = uo.
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Curves of Maximal Slope

A-convexity

Definition: )\-geodesic convexity
A functional ¢ : X — (—o0, +o¢0] is A\-geodesically convex, for A € R, if
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A-convexity

Definition: )\-geodesic convexity
A functional ¢ : X — (—o0, +o¢0] is A\-geodesically convex, for A € R, if

Vvo, vi € D(¢) 3 (constant speed) geodesic 7, v(0) = vp, ¥(1) = w1,

¢ is A-convex on 7.
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A-convexity

Definition: )\-geodesic convexity
A functional ¢ : X — (—o0, +o¢0] is A\-geodesically convex, for A € R, if

Vvo, vi € D(¢) 3 (constant speed) geodesic 7, v(0) = vp, ¥(1) = w1,

B(e) < (1= 1)6(u0) + t6(a) — 5t(1~ ) (vo,1) Ve e [0,1]
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A-convexity

Definition: )\-geodesic convexity
A functional ¢ : X — (—o0, +o¢0] is A\-geodesically convex, for A € R, if
Vvo, vi € D(¢) 3 (constant speed) geodesic 7, v(0) = vp, ¥(1) = w1,
A
d(ve) < (1 — t)p(vo) + to(wv1) — Et(l — t)d*(w,v1) Vte[o,1].

A-geodesic convexity implies the chain rule

If ¢ : X — (—o0,400] is A-geodesically convex, for some \ € R, and
lower semicontinuous, then

|0 ¢| = |0¢| satisfies the chain rule.
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A-convexity

Definition: )\-geodesic convexity
A functional ¢ : X — (—o0, +o¢0] is A\-geodesically convex, for A € R, if
Vvo, vi € D(¢) 3 (constant speed) geodesic 7, v(0) = vp, ¥(1) = w1,
A
d(ve) < (1 — t)p(vo) + to(wv1) — Et(l — t)d*(w,v1) Vte[o,1].

A-geodesic convexity implies the chain rule

If ¢ : X — (—o0,400] is A-geodesically convex, for some \ € R, and
lower semicontinuous, then

|0 ¢| = |0¢| satisfies the chain rule.

Reasonable: if X = B Banach space and ¢ : B — (—o0, +0] is convex
and l.s.c., the convex subdifferential 0¢ is strongly-weakly closed.
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Uniqueness for 2-curves of maximal slope

e Uniqueness proved only for p = 2!
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Uniqueness for 2-curves of maximal slope

e Uniqueness proved only for p = 2!

Theorem [Ambrosio-Gigli-Savaré '05]
Main assumptions (simplified):

> ¢ is \-geodesically convex, A € R,
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Uniqueness for 2-curves of maximal slope

e Uniqueness proved only for p = 2!

Theorem [Ambrosio-Gigli-Savaré '05]
Main assumptions (simplified):

> ¢ is \-geodesically convex, A € R,

> a “structural property” of the metric space (X, d)

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Curves of Maximal Slope

Uniqueness for 2-curves of maximal slope

e Uniqueness proved only for p = 2!

Theorem [Ambrosio-Gigli-Savaré '05]
Main assumptions (simplified):

> ¢ is \-geodesically convex, A € R,

» (X, d) is the Wasserstein space (#,(R?), W,)
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Curves of Maximal Slope

Uniqueness for 2-curves of maximal slope

e Uniqueness proved only for p = 2!

Theorem [Ambrosio-Gigli-Savaré '05]
Main assumptions (simplified):

> ¢ is \-geodesically convex, A € R,

» (X,d) is a Hilbert space
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Curves of Maximal Slope

Uniqueness for 2-curves of maximal slope

e Uniqueness proved only for p = 2!

Theorem [Ambrosio-Gigli-Savaré '05]
Main assumptions (simplified):

> ¢ is \-geodesically convex, A € R,

> a “structural property” of the metric space (X, d)
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Uniqueness for 2-curves of maximal slope

e Uniqueness proved only for p = 2!
Theorem [Ambrosio-Gigli-Savaré '05]
Main assumptions (simplified):
> ¢ is \-geodesically convex, A € R,
> a “structural property” of the metric space (X, d)

Then,
» existence and uniqueness of the curve of maximal slope
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Uniqueness for 2-curves of maximal slope

e Uniqueness proved only for p = 2!
Theorem [Ambrosio-Gigli-Savaré '05]
Main assumptions (simplified):
> ¢ is \-geodesically convex, A € R,
> a “structural property” of the metric space (X, d)
Then,
» existence and uniqueness of the curve of maximal slope
» Generation of a A\-contracting semigroup
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Long-time behaviour for 2-curves of maximal slope
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Curves of Maximal Slope

Long-time behaviour for 2-curves of maximal slope

Main assumptions:

| 4 p fry 2
> a “structural property” of the metric space (X, d)

> ¢ is A\-geodesically convex, A > 0,
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Long-time behaviour for 2-curves of maximal slope

Main assumptions:

| 4 p fry 2
> a “structural property” of the metric space (X, d)

> ¢ is A\-geodesically convex, A > 0,

Theorem [Ambrosio-Gigli-Savaré ’05]

> A >0
exponential convergence of the solution as t — +oco to the
unique minimum point o of ¢:

d(u(t),n) < e Md(up,i) Vt>0

» A=0 + ¢ has compact sublevels:
convergence to (an) equilibrium as t — 400
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Existence of a Global Attractor
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“Fill in the gaps” in the study of the long-time behaviour of p-curves of
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Our aim

“Fill in the gaps” in the study of the long-time behaviour of p-curves of
maximal slope

Study the general case:
> ¢ \-geodesically convex, A € R

> p general
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Existence of a Global Attractor

Our aim

“Fill in the gaps” in the study of the long-time behaviour of p-curves of
maximal slope

Study the general case:
> ¢ \-geodesically convex, A € R

> p general

Namely, we comprise the cases:
1. p=2,A<0 ~» uniqueness: YES
2. p#2, Xeé R ~» uniqueness: NO
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Existence of a Global Attractor

Our point of view

Not the study of the convergence to equilibrium as t — 400 of a single
trajectory
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Existence of a Global Attractor

Our point of view

Not the study of the convergence to equilibrium as t — 400 of a single
trajectory

But the study of the long-time behaviour of a family of trajectories
(starting from a bounded set of initial data): convergence to an invariant
compact set (“attractor")?
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Our point of view

Not the study of the convergence to equilibrium as t — 400 of a single
trajectory

But the study of the long-time behaviour of a family of trajectories
(starting from a bounded set of initial data): convergence to an invariant
compact set (“attractor")?

On the other hand, for p # 2 no uniqueness result, no semigroup of
solutions
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Existence of a Global Attractor

Our point of view

Not the study of the convergence to equilibrium as t — 400 of a single
trajectory

But the study of the long-time behaviour of a family of trajectories
(starting from a bounded set of initial data): convergence to an invariant
compact set (“attractor")?

On the other hand, for p # 2 no uniqueness result, no semigroup of
solutions

= Need for a theory of global attractors for (autonomous) dynamical
systems without uniqueness
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Existence of a Global Attractor

Our point of view

Not the study of the convergence to equilibrium as t — 400 of a single
trajectory

But the study of the long-time behaviour of a family of trajectories
(starting from a bounded set of initial data): convergence to an invariant
compact set (“attractor")?

On the other hand, for p # 2 no uniqueness result, no semigroup of
solutions

= Need for a theory of global attractors for (autonomous) dynamical
systems without uniqueness

Various possibilities: [Sell '73,'96], [Chepyzhov & Vishik '02],
[Melnik & Valero '02], [Ball '97,’04]
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Existence of a Global Attractor

Our point of view
Not the study of the convergence to equilibrium as t — 400 of a single
trajectory

But the study of the long-time behaviour of a family of trajectories
(starting from a bounded set of initial data): convergence to an invariant
compact set (“attractor")?

On the other hand, for p # 2 no uniqueness result, no semigroup of
solutions

= Need for a theory of global attractors for (autonomous) dynamical
systems without uniqueness

Various possibilities: [Sell '73,'96], [Chepyzhov & Vishik '02],
[Melnik & Valero '02], [Ball '97,’04]

In [R., Savaré, Segatti, Stefanelli, Global attractors for curves of maximal slope, in
preparation]: Ball's theory of generalized semiflows
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Existence of a Global Attractor

Generalized Semiflows: definition

Phase space: a metric space (X, dy)

A generalized semiflow S on X is a family of maps
g : [0,400) — X ( ), s. t.
(Existence) Vgo € X 3 at least one g € S with g(0) = go,
(Translation invariance) Vg € S and 7 > 0, the map g"(:) :=g(-+7) is
inS,
(Concatenation) ¥ g, h € S and t > 0 with h(0) = g(t), then z € S,
where

_Je(r) ifo<T <,
2(r) = h(r—t) ift<r,

(Us.c. w.r.t. initial data) If {g,} C S and g,(0) — go, I subsequence

{gn.} and g € S s.t. g(0) = go and g, (t) — g(t) for all
t>0.
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Existence of a Global Attractor

Generalized Semiflows: dynamical system notions

Within this framework:
» orbit of a solution/set
» w-limit of a solution/set
» invariance under the semiflow of a set
>

attracting set (w.r.t. the Hausdorff semidistance of X")
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Existence of a Global Attractor

Generalized Semiflows: dynamical system notions

Within this framework:
» orbit of a solution/set
» w-limit of a solution/set
» invariance under the semiflow of a set
» attracting set (w.r.t. the Hausdorff semidistance of X)
Definition
A set A C X is a global attractor for a generalized semiflow S if:
& A is compact
& A is invariant under the semiflow

& A attracts the bounded sets of X' (w.r.t. the Hausdorff
semidistance of X)
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

d 1, 1, .
SOM(0) = () = Z[o 0l (u(e)) for ae.t € (0.T),
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope
9 (u(e) = —~|u/P(6) — [0~ Gl7(u(¢)) for ae.t € (0, T)
dt p q e b) )
Choice of the phase space:

X =D(g)c X,
dy(u,v) :=d(u,v)+|p(u) — d(v)] VuveX.
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope
9 g(u(e)) = =10/ 1P(e) — 210~ 6l(u(z)) for ae.t € (0, T)
dt p q o r

Choice of the phase space:
X = D(¢) C X,
dx(u,v) :=d(u,v) + |¢(u) — ¢(v)| Vu,veX.

Choice of the solution notion: We consider the set S of the locally
absolutely continuous u : [0, +00) — X, which are p-curves of maximal
slope for ¢ (w.r.t. the relaxed slope).
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

SOUE) =~ () = <1079l (u(D) for ae.t € (0.40)

Choice of the phase space:
X = D(¢) C X,
dx(u,v) :=d(u,v) + |¢(u) — ¢(v)| Vu,veX.

Choice of the solution notion: We consider the set S of the locally
absolutely continuous u : [0, +00) — X, which are p-curves of maximal
slope for ¢ (w.r.t. the relaxed slope).
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

SOUE) =~ () = <1079l (u(D) for ae.t € (0.40)

Choice of the phase space:
X = D(¢) C X,
dx(u,v) :=d(u,v) + |¢(u) — ¢(v)| Vu,veX.

Choice of the solution notion: We consider the set S of the locally
absolutely continuous u : [0, +00) — X, which are p-curves of maximal
slope for ¢ (w.r.t. the relaxed slope).

> ; Is S a generalized semiflow?
» ;i Does S possess a global attractor?
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope
Theorem 1 [R., Savaré, Segatti, Stefanelli '06]
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 1 [R., Savaré, Segatti, Stefanelli '06]
Suppose that

> ¢ is lower semicontinuous

> ¢ is coercive

> the relaxed slope |0~ ¢| satisfies the chain rule
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 1 [R., Savaré, Segatti, Stefanelli '06]
Suppose that

> ¢ is lower semicontinuous

> ¢ is coercive

> the relaxed slope |0~ ¢| satisfies the chain rule
(the same assumptions of the existence theorem in [A.G.S. ’05])
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 1 [R., Savaré, Segatti, Stefanelli '06]
Suppose that
> ¢ is lower semicontinuous
> ¢ is coercive
> the relaxed slope |0~ ¢| satisfies the chain rule
(the same assumptions of the existence theorem in [A.G.S. ’05]) Then,

S is a generalized semiflow.
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 1 [R., Savaré, Segatti, Stefanelli '06]
Suppose that
> ¢ is lower semicontinuous
> ¢ is coercive
> the relaxed slope |0~ ¢| satisfies the chain rule
(the same assumptions of the existence theorem in [A.G.S. ’05]) Then,

S is a generalized semiflow.

Idea of the proof: to check the u.s.c. w.r.t. initial data, fix a sequence
{ug}n C D(¢) s. t. dx(ug, uo) = d(ug, uo) + |p(ug) — &(uo)| — 0.

1 [t 1 [t B
; /O nl(r)dr+ /O 107 l(u(r)) dr + 8(un(t)) = &(uo)

Energy identity = a priori estimates for {u,}; compactness and 3 of a
limit curve, passage to the limit like in the existence proof.
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope
Theorem 2 [R., Savaré, Segatti, Stefanelli '06]
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 2 [R., Savaré, Segatti, Stefanelli '06]
Suppose that

> ¢ is lower semicontinuous

> ¢ is coercive

> the relaxed slope |0~ ¢| satisfies the chain rule
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 2 [R., Savaré, Segatti, Stefanelli '06]
Suppose that

> ¢ is lower semicontinuous

> ¢ is coercive

> the relaxed slope |0~ ¢| satisfies the chain rule

>

¢ is continuous along sequences with bounded energies and slopes
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 2 [R., Savaré, Segatti, Stefanelli '06]
Suppose that
> ¢ is lower semicontinuous
> ¢ is coercive
> the relaxed slope |0~ ¢| satisfies the chain rule
> ¢ is continuous along sequences with bounded energies and slopes
> the set Z(S) the equilibrium points of S

Riccarda Rossi

Long-time behaviour of gradient flows in metric spaces



Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 2 [R., Savaré, Segatti, Stefanelli '06]
Suppose that
> ¢ is lower semicontinuous
> ¢ is coercive
> the relaxed slope |0~ ¢| satisfies the chain rule
> ¢ is continuous along sequences with bounded energies and slopes
> the set Z(S) the equilibrium points of S

Z(8) ={u € D(¢) : |0¢|(u) =0}
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 2 [R., Savaré, Segatti, Stefanelli '06]
Suppose that
> ¢ is lower semicontinuous
> ¢ is coercive
> the relaxed slope |0~ ¢| satisfies the chain rule
> ¢ is continuous along sequences with bounded energies and slopes
> the set Z(S) the equilibrium points of S

is bounded in (X, dx).
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 2 [R., Savaré, Segatti, Stefanelli '06]
Suppose that
> ¢ is lower semicontinuous
> ¢ is coercive
> the relaxed slope |0~ ¢| satisfies the chain rule
> ¢ is continuous along sequences with bounded energies and slopes
> the set Z(S) the equilibrium points of S

is bounded in (X, dx).

Then,
S admits a global attractor A.
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Existence of a Global Attractor

Long-time behaviour for p-curves of maximal slope

Theorem 2 [R., Savaré, Segatti, Stefanelli '06]
Suppose that
> ¢ is lower semicontinuous
> ¢ is coercive
> the relaxed slope |0~ ¢| satisfies the chain rule
> ¢ is continuous along sequences with bounded energies and slopes
> the set Z(S) the equilibrium points of S

is bounded in (X, dx).
Then,
S admits a global attractor A.

Idea of the proof:
> the generalized semiflow S is compact
» S has a Lyapunov functional
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Applications

Applications in Banach spaces

» X = B Banach space,
> ¢: B — (—00,+x] ls.c.,

¢=¢1+ ¢ 1 convex, ¢, C'
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Applications

Applications in Banach spaces

» X = B Banach space,
> ¢: B — (—00,+x] ls.c.,
=01+ ¢ ¢ convex, ¢, C*

Under these assumptions

> 00| (u) = min{||¢||z: : £ € dp(u)} for all ue D(¢),
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Applications

Applications in Banach spaces
» X = B Banach space,
> ¢: B — (—00,+x] ls.c.,
¢=¢1+ ¢ 1 convex, ¢, C'

Under these assumptions

> 00| (u) = min{||¢||z: : £ € dp(u)} for all ue D(¢),

> |J¢| is lower semicontinuous, hence |0¢| = [0~ ¢|
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Applications

Applications in Banach spaces

» X = B Banach space,
> ¢: B — (—00,+x] ls.c.,

¢=¢1+ ¢ 1 convex, ¢, C'

Under these assumptions

> 00| (u) = min{||¢||z: : £ € dp(u)} for all ue D(¢),

> |J¢| is lower semicontinuous, hence |0¢| = [0~ ¢|
> |0¢| = |0~ ¢| fulfils the chain rule
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Applications

Applications in Banach spaces

» X = B Banach space,
> ¢: B — (—00,+x] ls.c.,

¢=¢1+ ¢ 1 convex, ¢, C'

Under these assumptions

> 00| (u) = min{||¢||z: : £ € dp(u)} for all ue D(¢),

> |J¢| is lower semicontinuous, hence |0¢| = [0~ ¢|
> |0¢| = |0~ ¢| fulfils the chain rule

Hence, p-curves of maximal slope for ¢ (w.r.t. [0~ ¢|) lead to solutions of
the doubly nonlinear equation

Sp(u'(t)) + 9¢p(u(t)) 20 in B forae.te(0,T)

(Sp : B — B’ the p-duality map)
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Applications

Applications in Banach spaces

» X = B Banach space,
> ¢: B — (—00,+x] ls.c.,

¢=¢1+ ¢ 1 convex, ¢, C'

Under these assumptions

> 00| (u) = min{||¢||z: : £ € dp(u)} for all ue D(¢),

> |J¢| is lower semicontinuous, hence |0¢| = [0~ ¢|
> |0¢| = |0~ ¢| fulfils the chain rule

Under suitable coercivity assumptions, our long-time behaviour results give
the existence of a global attractor for the “metric solutions” of

Sp(u'(t)) + 9¢p(u(t)) >0 in B forae.te(0,T)

thus recovering some results in [SEGATTI ’06].
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Applications

Applications in Banach spaces

» X = B Banach space,
> ¢: B — (—o0,+0] l.s.c.
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Applications

Applications in Banach spaces

» X = B Banach space,
> ¢: B — (—o0,+0] l.s.c.

We may consider the limiting subdifferential of ¢: for u € D(¢)
&n € 09(un) Vn €N,

Up — u,
&—*¢ in B,
sup, ¢(up) < +00

&€ dip(u) < I{us}, {6} CB:

a version of the strong-weak* closure of d¢ ([Mordhukhovich '84]).
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Applications

Applications in Banach spaces

» X = B Banach space,
> ¢: B — (—o0,+0] l.s.c.

We may consider the limiting subdifferential of ¢: for u € D(¢)
&n € 09(un) Vn €N,

Up — u,
&—*¢ in B,
sup, ¢(up) < +00

&€ dip(u) < I{us}, {6} CB:

a version of the strong-weak* closure of d¢ ([Mordhukhovich '84]).

It can be proved that for all u € D(¢)

|07 0| (u) = min{||¢]l : & € Deg(u)}
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Applications

Applications in Banach spaces

» X = B Banach space,
> ¢: B — (—o0,+0] l.s.c.

We may consider the limiting subdifferential of ¢: for u € D(¢)
&n € 09(un) Vn €N,

up — u,
&= in B

sup, ¢(un) < 400

a version of the strong-weak* closure of d¢ ([Mordhukhovich '84]).

&€ dip(u) < I{us}, {6} CB:

Under suitable assumptions p-curves of maximal slope for ¢ (w.r.t. |0~ ¢|)
lead to solutions of the doubly nonlinear equation

Sp(U'(t)) + 0ep(u(t)) 20 in B" forae.te(0,T)
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Applications

Applications in Banach spaces

» X = B Banach space,
> ¢: B — (—o0,+0] l.s.c.

We may consider the limiting subdifferential of ¢: for u € D(¢)
&n € 09(un) Vn €N,

up — u,
&= in B

sup, ¢(un) < 400

a version of the strong-weak* closure of d¢ ([Mordhukhovich '84]).

&€ dip(u) < I{us}, {6} CB:

Our results yield the existence of a global attractor for the “metric
solutions” of

Sp(u'(t)) 4+ 0ep(u(t)) 20 in B" forae.te(0,T)

thus extending some results by [ROSSI-SEGATTI-STEFANELLI ’05].
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Applications

Applications in Wasserstein spaces

Consider the functional ¢ : Z,(R") — (—o00, +]

1
o) ::/HF(/))der/nVdquE/]Rn Ran(u@,u) if u=pdx
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Applications

Applications in Wasserstein spaces
Consider the functional ¢ : Z,(R") — (—o00, +]
1
o) ::/ F(p)dx+/ Vdu+§/ Wd(p®pu) if u=pdx
n n Rann

» F ~~ internal energy
» V ~ potential energy (“confinement potential”)

» W ~~ interaction energy

proposed by [CARRILLO, MCCANN, VILLANI '03,’04] in the framework
of kinetic models for equilibration velocities in granular media.
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Applications

Applications in Wasserstein spaces
Consider the functional ¢ : Z,(R") — (—o00, +]
1
o) ::/ F(p)dx+/ Vdu+§/ Wd(p®pu) if u=pdx
n n Rann

Now, p-curves of maximal slope for ¢ yield solutions to the drift-diffusion
equation with nonlocal term

L
Orp — div (ij (V;(p) +VV+ (VW)*p)) =0inR"x(0,T),
where Lr(p) = pF'(p) — F(p), such that

P8 20, [ plx ) dx =1 ¥ (x,2) € R x (0, +0),
Jen IXIPp(x, t)dx < +00 Vit >0.
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Applications

Applications in Wasserstein spaces

Orp — div (ij <VL;(p) +VV+ (VW)*p)) =0inR" x (0, T),

p(x,t) >0, [e.p(x,t)dx =1 Y (x,t) € R" x (0,+00),
Jgo IXIPo(x,t)dx < 400 Vit >0.
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Applications

Applications in Wasserstein spaces

Orp — div (ij <VL;(p) +VV+ (VW)*p)) =0inR" x (0, T),

p(x,t) >0, [e.p(x,t)dx =1 Y (x,t) € R" x (0,+00),
Jgo IXIPo(x,t)dx < 400 Vit >0.

» In [AMBROSIO-GIGLI-SAVARE '05]: an existence result via the
approach of p-curves of maximal slope

» No general uniqueness result is known
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Applications

Applications in Wasserstein spaces

L
O¢p — div (ij <V;(p) +VV>> =0inR"x (0, T),

p(x,t) >0, [e.p(x,t)dx =1 V(x,t) € R" x (0,+00),
Jao IX[Po(x,t)dx < 400 Vit >0.

» In [AMBROSIO-GIGLI-SAVARE '05]: an existence result via the
approach of p-curves of maximal slope

» No general uniqueness result is known

In the case W = 0, under suitable A-convexity assumptions on V, growth
& convexity assumptions on F, [AGUEH '03] has proved the exponen-
tial decay of solutions to equilibrium for t — 400, with explicit rates of
convergence, by refined Logarithmic Sonbolev inequalities
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Applications

Applications in Wasserstein spaces

Orp — div (ij <VL;(p) +VV+ (VW)*p)) =0inR" x (0, T),

p(x,t) >0, [e.p(x,t)dx =1 Y (x,t) € R" x (0,+00),
Jgo IXIPo(x,t)dx < 400 Vit >0.

» In [AMBROSIO-GIGLI-SAVARE '05]: an existence result via the
approach of p-curves of maximal slope

» No general uniqueness result is known

In the general case, [CARRILLO, MCCANN, VILLANI ’'03,’04] have
proved in the case g = 2 uniqueness, contraction estimates, and the expo-
nential decay of solutions to equilibrium for t — +o0, with explicit rates of
convergence (recovered in the general case by [AMBROSIO-GIGLI-SAVARE
'05])
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Applications

Applications in Wasserstein spaces

We have obtained for all 1 < g < oo the existence of a global attractor
for the metric solutions of
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Applications

Applications in Wasserstein spaces

We have obtained for all 1 < g < oo the existence of a global attractor
for the metric solutions of

Orp — div (ij <VL;(p) +VV+ (VW)*p)) =0inR" x (0, T),

p(x,t) >0, [o.p(x,t)dx =1 VY (x,t) € R" x (0,+00),
Jgo IX[Po(x,t)dx < 400 Vit >0.
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Applications

Applications in Wasserstein spaces

We have obtained for all 1 < g < oo the existence of a global attractor
for the metric solutions of

L
Orp — div (ij <V;(p) +VV 4+ (VW)*p)) =0inR"x(0,T),
p(x,t) >0, [o.p(x,t)dx =1 VY (x,t) € R" x (0,+00),
Jgo IX[Po(x,t)dx < 400 Vit >0.

under suitable A-convexity assumptions on V, growth & convexity
assumptions on F, convexity & a doubling condition on W.
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Applications

Applications in Wasserstein spaces

We have obtained for all 1 < g < oo the existence of a global attractor
for the metric solutions of

L
O¢p — div (qu (V ;(p) +VV>> =0inR"x(0,7),

p(x,t) >0, [e.p(x,t)dx =1 V(x,t) € R" x (0, +00),
Jao IX[Po(x,t)dx < 400 Vit >0.

For W = 0, our conditions are partially weaker than AGUEH's, but the
results too are weaker (at our best, we obtain that the attractor consists
of a unique equilibrium, but no explicit rates of decay).
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Applications

Towards a chain-rule free approach

» |t would be crucial to drop the A-convexity assumption on V ~~
methods based Logarithmic-Sobolev inequalities do not work any
more ~~ the existence of a global attractor is a meaningful
information..
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Applications

Towards a chain-rule free approach

» |t would be crucial to drop the A-convexity assumption on V ~~
methods based Logarithmic-Sobolev inequalities do not work any
more ~~ the existence of a global attractor is a meaningful
information..

» No A-convexity of V' ~~» no A-geodesic convexity of ¢ ~~ how to
prove that |0~ ¢| complies with the chain rule?
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Applications

Towards a chain-rule free approach

» |t would be crucial to drop the A-convexity assumption on V ~~
methods based Logarithmic-Sobolev inequalities do not work any
more ~~ the existence of a global attractor is a meaningful
information..

» No A-convexity of V' ~~» no A-geodesic convexity of ¢ ~~ how to
prove that |0~ ¢| complies with the chain rule?

» It would be crucial to drop the chain rule condition on |0~ ¢|
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More..

Towards a chain-rule free approach
Let us revise the proof of the general existence theorem (for p = 2):
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Towards a chain-rule free approach
Let us revise the proof of the general existence theorem (for p = 2):

> a priori estimates & the compactness argument do not need the chain rule
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More..

Towards a chain-rule free approach
Let us revise the proof of the general existence theorem (for p = 2):

> a priori estimates & the compactness argument do not need the chain rule

» We pass to the limit in the approximate energy inequality

/ o (2dr + / 106[2(n, (7)) dr + (i, () < B(ur, ()

V0<s<t<T arguing
> on the left-hand side: by lower semicontinuity

> on the right-hand side: by monotonicity, which gives that
Fp(s) 1= Jim ¢(ur, (s)) = ¢(u(s)) Vs €0, T]
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More..

Towards a chain-rule free approach
Let us revise the proof of the general existence theorem (for p = 2):

> a priori estimates & the compactness argument do not need the chain rule

» In the limit we find a non-decreasing function ¢ : [0, T] — R such that
VO<s<t<T

3 [ IR g [P ar+ o) < o)

and
p(t)=¢(u(t)) Vte[o,T].
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More..

Towards a chain-rule free approach
Let us revise the proof of the general existence theorem (for p = 2):

» Note: the chain rule for |0~ ¢| is used just to obtain
p(t)=¢(u(t)) Vtel[0,T]

and conclude that u is a curve of maximal slope for ¢.
» In the limit we find a non-decreasing function ¢ : [0, T] — R such that

VO<s<t<T

3 [ IR g [P ar+ ol < o)

and
e(t)=¢(u(t)) Vte[o,T].
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More..

A new “solution notion”

A new (candidate) Generalized Semiflow
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More..

A new “solution notion”

A new (candidate) Generalized Semiflow
We switch from

Sold = {u € AC,oc(0,+00; X) : uis a p-curve of maximal slope for ¢}
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More..

A new “solution notion”

A new (candidate) Generalized Semiflow

to a new solution notion
Shew = {(u,ap) s u € ACic(0, 4+00; X),

¢ : [0,+00) — R is non increasing, and (1)-(2) hold}
where forall 0 < s <t< T

3 [ Wierars s [0 ounar+ el <o) )
A)=0ult) Vee (o T] @)
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More..

A new phase space & a new result

A new phase space
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More..

A new phase space & a new result

A new phase space

Xoia = D(¢) with the distance dx,,(u, u') = d(u, u") + |p(u) — ¢(u')]
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More..

A new phase space & a new result

A new phase space

Xoew = {(u,0) € D(¢) xR : ¢ > ¢(u)}
with the distance dx_ ((u, ), (¢, ¢')) = d(u, u') + | — ¢'|
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More..

A new phase space & a new result

A new phase space

Xoew = {(u,0) € D(¢) xR : ¢ > ¢(u)}
with the distance dx_ ((u, ), (¢, ¢')) = d(u, u') + | — ¢'|

A new result
Suppose that

> ¢ is lower semicontinuous
> ¢ is coercive
> The set of rest point for Syew is bounded.

Then, Shew is a generalized semiflow in (Xpew, dhew), and it admits a
global attractor.
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More..

A new phase space & a new result

A new phase space

Xoew = {(u,0) € D(¢) xR : ¢ > ¢(u)}
with the distance dx._ ((u,¢), (¢, ¢')) = d(u, u') + | — ¢/|

A new result
Suppose that

> ¢ is lower semicontinuous
> ¢ is coercive
> The set of rest point for Syew is bounded.

Then, Shew is a generalized semiflow in (Xpew, dhew), and it admits a
global attractor.

Application: any evolution problem arising as limit of a “steepest
descent” approximation scheme, under the “minimal” assumptions to get
existence...
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