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Introduction

The equation
We consider the
generalized (viscous) Cahn-Hilliard equation: ‘

xt — A(a(dx: — Ax +¢(x))) =0 inQx(0,T),

QCcRM, N=1,23, a bdd smooth domain, (0, T) a time interval;
a: D(a) C R — R is strictly increasing and differentiable;

0 > 0 a constant;

Typically ¢(x) = x°> — x (derivative of the double-well potential)

vvyVvYyy

Riccarda Rossi

On the Cahn-Hilliard equation with a chemical potential dependent mobility



Introduction

The equation
We consider the
generalized (viscous) Cahn-Hilliard equation: ‘

xt — A(a(dx: — Ax +¢(x))) =0 inQx(0,T),

QCcRM, N=1,23, a bdd smooth domain, (0, T) a time interval;
a: D(a) C R — R is strictly increasing and differentiable;

0 > 0 a constant;

Typically ¢(x) = x°> — x (derivative of the double-well potential)

If « is linear,

vvyy

v

a(r) = kr Vr eR, (k>0 ~» mobility)
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xt — A(a(dx: — Ax +¢(x))) =0 inQx(0,T),

QCcRM, N=1,23, a bdd smooth domain, (0, T) a time interval;
a: D(a) C R — R is strictly increasing and differentiable;

0 > 0 a constant;
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If « is linear,
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v

a(r) = kr Vr eR, (k>0 ~» mobility)
for 6 = 0 we have the Cahn-Hilliard equation

Xt — KA(—Ax + é(x)) =0 inQx(0,T),
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The equation
We consider the
generalized (viscous) Cahn-Hilliard equation: ‘

xt — A(a(dx: — Ax +¢(x))) =0 inQx(0,T),

QCcRM, N=1,23, a bdd smooth domain, (0, T) a time interval;
a: D(a) C R — R is strictly increasing and differentiable;

0 > 0 a constant;

Typically ¢(x) = x°> — x (derivative of the double-well potential)

If « is linear,

vvyy

v

a(r) = kr Vr eR, (k>0 ~» mobility)

for 6 > 0 we have the viscous Cahn-Hilliard equation
Xt — KA(Gx: — Ax +¢(x)) =0 inQ2x (0, T),

proposed in [Novick-Cohen '88] to account for viscosity effects in the phase
separation in polymers.
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Introduction

The equation

We consider the
‘ generalized (viscous) Cahn-Hilliard equation: ‘

xt — A(a(dx: — Ax +¢(x))) =0 inQx(0,T),

QCcRM, N=1,23, a bdd smooth domain, (0, T) a time interval;
a: D(a) C R — R is strictly increasing and differentiable;

0 > 0 a constant;

Typically ¢(x) = x°> — x (derivative of the double-well potential)

If « is linear,

vvyy

v

a(r) = kr Vr eR, (k>0 ~» mobility)

for 6 > 0 we have the viscous Cahn-Hilliard equation
Xt — KA(Gx: — Ax +¢(x)) =0 inQ2x (0, T),

proposed in [Novick-Cohen '88] to account for viscosity effects in the phase

separation in polymers.
Both for § = 0 and § > 0: wide literature on well-posedness (for various

variants of the model), long-time behaviour, dynamics of pattern formation..
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Introduction

Gurtin’s generalized Cahn-Hilliard equation

e M.E. Gurtin [Phys. D '96] proposed a novel derivation of the Cahn-Hilliard
equations, thus obtaining the

generalized viscous Cahn-Hilliard equation

{xt — div(M(Z)Vw) =0 (GVCHE)
w = 08(Z)xe — Ax + 6(x)

» w chemical potential
» M mobility tensor (symmetric, positive definite)

constitutive variables: Z = (x, Vx, x¢, w, Vw)!
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Gurtin’s generalized Cahn-Hilliard equation
e M.E. Gurtin [Phys. D '96] proposed a novel derivation of the Cahn-Hilliard
equations, thus obtaining the

generalized viscous Cahn-Hilliard equation

{Xt — div(M(Z)Vw) = 0

(GVCHE)
w = 6(Z)x: — Ax + o(x)

» w chemical potential
» M mobility tensor (symmetric, positive definite)

constitutive variables: Z = (x, Vx, x¢, w, Vw)!

e Several results [Miranville & Bonfoh, Carrive, Cherfils, Grasselli, Piétrus,
Rakotoson, Rougirel, Schimperna, Zelik..]: well-posedness and long-time behaviour
for variants of (GVCHE) (also in the anisotropic case) with periodic and Neumann
b.c., and M(Z) = M, M(x), constant §.
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Gurtin’s generalized Cahn-Hilliard equation

e M.E. Gurtin [Phys. D '96] proposed a novel derivation of the Cahn-Hilliard
equations, thus obtaining the

generalized viscous Cahn-Hilliard equation

—div(M(Z =
xt — div(M(Z2)Vw) =0 (GVCHE)
w=0(Z)x: — Ax + o(x)
» w chemical potential
» M mobility tensor (symmetric, positive definite)

constitutive variables: Z = (x, Vx, x¢, w, Vw)!

e Several results [Miranville & Bonfoh, Carrive, Cherfils, Grasselli, Piétrus,
Rakotoson, Rougirel, Schimperna, Zelik..]: well-posedness and long-time behaviour
for variants of (GVCHE) (also in the anisotropic case) with periodic and Neumann
b.c., and M(Z) = M, M(x), constant §.

e Well-posedness and long-time behaviour for the standard Cahn-Hilliard eq. (viscous
and non-viscous), with a concentration-dependent mobility tensor: [Barrett, Blowey,
Bonetti, Colli, Dreyer, Gilardi, Elliott, Novick-Cohen, Garcke, Schimperna,
Sprekels..].
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Introduction

A chemical potential dependent mobility

Xt = Ala(dxe —Ax +6(x))) =0 in 2x(0,T),
is a particular case of (GVCHE):

{Xt —dv(MZ)Vw) =0 o 0, T)
w = dx: — Ax + d(x) o

with 3(Z) =35, M(Z) = M(w),
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Introduction

A chemical potential dependent mobility

xe = A(a(0x: = Ax +6(x))) =0 in 2x (0, T),
is a particular case of (GVCHE):

xt —div(M(Z)V(dx: — Ax+ ¢x)) =0 inQ2x(0,T)

with §(Z2) =6, M(Z) = M(w) := o' (w)l,

(admissible, o’ > 0!), i.e., a chemical potential-dependent mobility tensor!!
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Introduction

A chemical potential dependent mobility

xe = A(a(0x: = Ax +6(x))) =0 in 2x (0, T),
is a particular case of (GVCHE):

xt —div(M(Z)V(dx: — Ax+ ¢x)) =0 inQ2x(0,T)

with §(Z2) =6, M(Z) = M(w) := o' (w)l,
(admissible, o’ > 0!), i.e., a chemical potential-dependent mobility tensor!!
e no-flux boundary conditions for x and w: mass conservation for

e [R.’05 & '06] well-posedness and long-time behaviour results for two
different boundary value problems corresponding to two choices of the
mobility law ¢, in the case ¢(x) = x* — x.
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Introduction

Analytical difficulties

Decouple the system

Xe = Aa(w) =0 in Q x (0, T)
Oxe — Ax +o(x) = w

+ no flux boundary conditions

Ox=0ww=0 indQ2x(0,T)
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Analytical difficulties
Decouple the system
{Xt_Aa(W) =0 in Q x (0, T)
oxe —Ax+ ¢(x) = w
+ no flux boundary conditions
Ox=0ww=0 indQ2x(0,T)

> nonlinearity acting on w + no derivative on w: no compactness, how to
pass to the limit in a(w)?
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Analytical difficulties

Decouple the system
_A -
Xe — Aaw) =0 in Q % (0, T)
oxe —Ax +¢(x) =w
+ no flux boundary conditions
Oux=0aw =0 in0Q2x(0,T)

> nonlinearity acting on w + no derivative on w: no compactness, how to
pass to the limit in a(w)? BY MONOTONICITY of «

» Only Vw is estimated from the first equation (using SUITABLE
COERCIVITY of «)
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Analytical difficulties

Decouple the system

xt — Aa(w) =0 .
{AX+¢(X) W in 2x(0,T)

+ no flux boundary conditions

Ox=0ww=0 ind2x(0,T)

> nonlinearity acting on w + no derivative on w: no compactness, how to
pass to the limit in a(w)? BY MONOTONICITY of «

» Only Vw is estimated from the first equation (using SUITABLE
COERCIVITY of «) How to get a full estimate on w?? COMBINED
ASSUMPTIONS ON « and ¢

» Case § = 0 even more difficult: quasi-stationary case, you need to recover
estimates for x: from the first equation. How?
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Introduction

Analytical difficulties

Decouple the system

xt — Aa(w) =0 .
{AX+¢(X) W in 2x(0,T)

+ no flux boundary conditions
Ox=0ww=0 ind2x(0,T)

> nonlinearity acting on w + no derivative on w: no compactness, how to
pass to the limit in a(w)? BY MONOTONICITY of «

» Only Vw is estimated from the first equation (using SUITABLE
COERCIVITY of «) How to get a full estimate on w?? COMBINED
ASSUMPTIONS ON « and ¢

» Case § = 0 even more difficult: quasi-stationary case, you need to recover
estimates for x: from the first equation. How? COMBINED
ASSUMPTIONS ON « and ¢

Aim: generalize the choices for a and ¢ in [R.’05 & '06]
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Introduction

Outlook

xt + A(a(dx: + Ax+o(x))) =0 inQx(0,T),

with A: Laplacian with homogeneous Neumann boundary conditions

Riccarda Rossi

ith a chemical potential dependent m



Introduction

Outlook

xt + A(a(dx: + Ax+o(x))) =0 inQx(0,T),

with A: Laplacian with homogeneous Neumann boundary conditions

Main assumptions on « and ¢:

a : R — R strictly increasing, differentiable,

3p>0, 3G, G>0: VreR C1(|r|2p+1)Sa'(r)§C2(|r|2P+1);
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xt + A(a(dx: + Ax+o(x))) =0 inQx(0,T),

with A: Laplacian with homogeneous Neumann boundary conditions
Main assumptions on « and ¢:
a : R — R strictly increasing, differentiable,

3p>0, 3G, G>0: VreR C1(|r|2p+1)Sa'(r)§C2(|r|2P+1);

peC*(R;R), 3G>0: VreR |¢(r)\gc3($(r)+1) (& primitive of ¢),
3G >0: VreR ¢/(Y)Z—C4
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Outlook

xt + A(a(dx: + Ax+o(x))) =0 inQx(0,T),

with A: Laplacian with homogeneous Neumann boundary conditions
Main assumptions on « and ¢:

a : R — R strictly increasing, differentiable,
Ip>0, 3G, G>0: VYreR G (|r|2p+1) <d(r) <G (|r|2p+1);
peC*(R;R), 3G>0: YreR |o(r)] <G (a(r) + 1) (& primitive of ¢),
3G >0: VreR ¢/(Y)Z—C4

> A priori estimates and existence result for 6 =0 and § > 0
> Global attractor for § > 0

> Uniqueness, regularizing effect, and exponential attractor for § > 0
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A priori estimates

A priori estimates (1)
Assumptions:

aincreasing, o'(r) = [r* [6(1)] < C (B +1), ¢(r)>-C

Riccarda Rossi

ith a chemical potential dependent m



A priori estimates

A priori estimates (1)
Assumptions:

aincreasing, o'(r) = [r* [6(1)] < C (B +1), ¢(r)>-C
PDE system:
xt + Aa(w) =0
dxt + Ax + o(x) = w
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A priori estimates

A priori estimates (1)
Assumptions:

aincreasing, o'(r) = [r* [6(1)] < C (B +1), ¢(r)>-C

PDE system:
(xt + Aa(w) =0) xw
(oxt +Ax+d(x) = w) Xxt

Energy estimate:

t t 1 —~ 1 —~
’ 2 2 2 —— 2
| ool s [ el 5 I9x0 B+ | 20 = SI9XO et | 3 0c(0))
whence

51/2“)(:HL2(o,T;LZ(Q))+||VW||L2(o,T;LZ(Q))+||VX||Lm(o,T;L2(n))+||$(X)||L<>c(o,T;L1(Q)) <C
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A priori estimates

A priori estimates (1)
Assumptions:

aincreasing, o'(r) = [r* [6(1)] < C (B +1), ¢(r)>-C
PDE system:
(xt + Aa(w) =0) x1
(oxt +Ax +o(x) =w) x1

Energy estimate:
t t 1 —~ 1 —~
| ool s [ el + 5 I9x0 B+ | 30 = SI9XO@ et | 3 0c(0))

whence

51/2“)(:HL2(o,T;LZ(Q))+||VW||L2(o,T;LZ(Q))+||VX||Lm(o,T;L2(n))+||$(X)||L<>c(o,T;L1(Q)) <C

Conservation of mass:
w Jaxe =0 = @ fox(t) = & Jox(0)
: a7 Jo w(t)
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A priori estimates

A priori estimates (1)
Assumptions:

aincreasing, o'(r) = [r* [6(1)] < C (B +1), ¢(r)>-C
PDE system:
xt + Aa(w) =0
dxt + Ax + o(x) = w

Energy estimate:

| e rvw+s [ ixelfag +5 I9x(0 gt | 3040) = IV gyt | 30x0)

whence

51/2“)(:HL2(o,T;LZ(Q))+||VW||L2(o,T;LZ(Q))+||VX||Lm(o,T;L2(n))+||$(X)||L<>c(o,T;L1(Q)) <C

Conservation of mass:
{ W] Jaxt =0 = \Q 1 Jax(t) = ‘Q| Jax(0)
\Q| fQ o(x(t)) = %f w(t)
Full estimate for x:

(19Xl 0, 2@y +1mOAENN) = Ixlioe 0,761
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A priori estimates

A priori estimates (1)
Assumptions:
aincreasing, a'(r) =|r|?* |¢(r)] < C (g(r) + 1) , ¢'(r)>-C

PDE system:

xt + Aa(w) =0

dxe + Ax +o(x) = w
Known estimates:

{ 82|Ixell 20,7120y + 1V W20, 7-02(0)) + Xl oo (0, Tora ey + 10 oo (0, 7212023 < C

m(¢(x(1))) = m(w(t))
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A priori estimates

A priori estimates (1)
Assumptions:
aincreasing, a'(r) =|r|?* |¢(r)] < C (g(r) + 1) , ¢'(r)>-C

PDE system:

xt + Aa(w) =0

dxe + Ax +o(x) = w
Known estimates:

{ 82|Ixell 20,7120y + 1V W20, 7-02(0)) + Xl oo (0, Tora ey + 10 oo (0, 7212023 < C

m(¢(x(1))) = m(w(t))

Full estimate for w: need estimate for |m(w)| = |m(¢$(x))|.
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A priori estimates

A priori estimates (1)
Assumptions:
aincreasing, o/(r) = |r\2" |p(r)| < C ($(r) + 1) . ¢'(r)>-C
PDE system:
xt + Aa(w) =0
dxt + Ax + ¢(x) = w

Known estimates:
{ 82 1xell 20, 7200y + IV W20, 70209 + 1VXl oo (0, 7op1(c2)) + 1600 1oo 0, 7120y < €
m($(x(t))) = m(w(t))

Full estimate for w: need estimate for |m(w)| = |m(é(x))|. Use
[o(x)| < C(o(x) + 1), hence

||$(X)||Loo(o,T;L1(Q))) < C= [Im(w)llreo0,1) = lIM(¢(X) oo 0,7y < €
C.

IN

= w20, 7:11(0))
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A priori estimates

A priori estimates (1)
Assumptions:
aincreasing, o/(r) = |r\2" |p(r)| < C ($(r) + 1) . ¢'(r)>-C
PDE system:
xt + Aa(w) =0
Oxt +Ax + o(x) =w
Known estimates:
{ 82 1xell 20 71200y F+ Wl 200, 702 + Xl oo (0, Tom () + 1600 Lo (0. 7:00(0) < €
[lm(w)llLoc 0,1y < €
Full estimate for w: need estimate for |m(w)| = |m(é(x))|. Use
[¢(x)| < C(é(x) + 1), hence
l60 oo 0, 71 S € = Im(W)llLoo(0,7) = IM(@(X) |0, 1) < €
C.

IN

= w20, 7:11(0))

monotone Lipschitz

Elliptic regularity estimate: from ¢'(r) > —C, we have ¢(x) = B(x) + o(x)

Riccarda Rossi

On the Cahn-Hilliard equation with a chemical potential dependent mobility



A priori estimates

A priori estimates (1)
Assumptions:
aincreasing, a'(r) =|r|?* |¢(r)] < C (g(r) + 1) , ¢'(r)>-C
PDE system:
Xt + Aa(w) =0
oxt + Ax + B(x) = w — o(x)
Known estimates:
{ 82 \Ixell 20, T2y + 1Wlli20, 711 (0)) + 11Xl Lo (0, 7 1(0)) + ”‘E(X)”LOO(O,T;U(Q)) <C
[lm(w)llLos 0,1y < €
Full estimate for w: need estimate for |m(w)| = |m(é(x))|. Use
[¢(x)| < C(é(x) + 1), hence
l60 oo 0, 71 S € = Im(W)llLoo(0,7) = IM(@(X) |0, 1) < €
C.

IN

= w20, 7:11(0))

monotone Lipschitz

Elliptic regularity estimate: from ¢'(r) > —C, we have ¢(x) = B(x) + o(x)
<||¢(X)||L2(0,T;L2(Q)) + HAXHLZ(O,T;LZ(Q))) < C = xllze, @) < C
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A priori estimates

A priori estimates (I11)

Assumptions:
aincreasing, o (r) & |r?P |é(r)| < C (¢?(r) + 1) . d(r)>—C

PDE system:

xt + Aa(w) =0

dxe + Ax +o(x) = w
Known estimates:

51/2\\XtHL2(0,T;L2(Q)) + Wl 20, 711 (0)) + IXI Lo 0, 711 () T ”‘E(X)”LOO(O,T;U(Q)) <C

IxI1 20, 7512(0)) + 100 200, 7120y + MWl Loe0,7) < C
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A priori estimates

A priori estimates (I11)
Assumptions:
aincreasing, o/ (r) = |r[? |¢(r)] < C (g(r) + 1) , ¢'(r)>-C
PDE system:
Xt + Aa(w) =0
AX + d(x) = w
Known estimates:

51/2\\XtHL2(0,T;L2(Q)) + Wl 20, 711 (0)) + IX Lo 0, 711 () T ”‘E(X)”LOO(O,T;U(Q)) <C

X120, 7512(0)) + 100 200, 712(02)) + MWl Loe0,7) < C

Estimate for y: in the case 6 = 0: estimate x: arguing by comparison. Need estimate
for a(w) = w?Pt1,
Energy estimate [! [ o/(w)|Vw[2 < C
Jo Jao'( a)/‘(w) ‘z w2 [ = V(WP ) 20, 7:12(0)) < €

Since |[m(w)][ oo (0, 7y < C, we have ||WP+1||L2(O’T;H1(Q)) < C, hence
HWpHHB(o,T;LG(Q)) < C, hence
2p+2 6p+ 6

, Kp = .
2p+1" P 2p+1

lae(w)llor o, 7m0 ()) < €5 with pp =
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A priori estimates

A priori estimates (1V)

Assumptions:
aincreasing, o/(r) & [ [6(r)| < C (8(r)+1), ¢(r)>-C

PDE system:
Xt + Aa(w) =0

Ax +o(x) =w
Known estimates:

{ 8Y2|Ixell 20, 7.02(09) + IWlli2(0, 71120y + Xl oo 0, msrn(s2)) + 10O 0w (0, 7201(22)) <

Ixll 20, 7:12(02)) + 1180 200, T502(02)) + 1MW)l oo 0,7y + (W)l om0, 7:0p () < €
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A priori estimates

A priori estimates (1V)

Assumptions:
aincreasing, o/(r) & [ [6(r)| < C (8(r)+1), ¢(r)>-C

PDE system:
Xt + Aa(w) =0

Ax +o(x) =w
Known estimates:

8Y2|Ixell 20, 7.02(09) + IWlli2(0, 71120y + Xl oo 0, msrn(s2)) + 10O 0w (0, 7201(22)) <

Ixll 20, 7:12(02)) + 1180 200, T502(02)) + 1MW)l oo 0,7y + (W)l om0, 7:0p () < €

From a comparison we thus have

”XYHLPP(O,T;W_Z”“P(Q)) <C, pp>1
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Existence results

The case ¢ > 0: passage to the limit
Xt + Aa(w) =0
oxe + Ax +d(x) = w

A priori estimates for § > 0:

{ Ixtll 20, 7200y + Wl 20, 711 (02)) T XN 200, 712 (@) A Lo (0, 511 () < €

||$(X)||L°°(0,T;L1(Q)) + 160200, 7:12()) + (W)l er 0, T:1mp () < €
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Existence results

The case ¢ > 0: passage to the limit
Xt + Aa(w) =0
oxe +AX + o(x) = w
A priori estimates for § > 0:
Ixell 20, 702009 + IWlli2(0, 7210y + Xl 10w (0, Toma ey + 1600w 0, 7020) <
Xl 20, 7512(0)) + 120N 200, 7i12(0)) + ledlw)l om0, 75070 (2)) < €

lloe(w)ll ep (0, 7:12()) < € (elliptic regularity)
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Existence results

The case ¢ > 0: passage to the limit

Xt + Aa(w) =0
Oxe + Ax + ¢(x) = w

A priori estimates for § > 0:
Ixtll20, 702 (0)) + IWll20, 7301 (0)) + Xl oo 0, 7)) + ||$(X)”L°°(O,T;L1(Q)) <C
Xl 20, 7512(0)) + 120N 200, 7i12(0)) + ledlw)l om0, 75070 (2)) < €

lloe(w)ll ep (0, 7:12()) < € (elliptic regularity)

Approximate problem:

xt + Alam(w)) =0 am truncation of o
Oxt +Ax + dulx) =w ¢, truncation of ¢
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Existence results

The case ¢ > 0: passage to the limit

Xt + Aa(w) =0
oxe +AX + o(x) = w
A priori estimates for § > 0:
Ixell 20, 702009 + IWlli2(0, 7210y + Xl 10w (0, Toma ey + 1600w 0, 7020) <
Xl 20, 7512(0)) + 120N 200, 7i12(0)) + ledlw)l om0, 75070 (2)) < €

lloe(w)ll ep (0, 7:12()) < € (elliptic regularity)

Approximate problem:

xt + Alam(w)) =0 am truncation of o
Oxt +Ax + dulx) =w ¢, truncation of ¢

In the passage to the limit as m — oo and p — oo, identification of the weak
limit of a(wi,,.) via a monotonicity argument.
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Existence results

The case § > 0: existence result

Theorem |
Under assumptions

aincreasing, o'(r) = |r]*, |o(r)| < C ((;AS(r) + 1) , @'(r)>-C
there exists a solution (x, w) to the (Cauchy problem) for

Xt +Aa(w) =0 ae inQx(0,T)
Oxt +Ax+o(x)=w ae inQ2x(0,T)
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Existence results

The case § > 0: existence result

Theorem |
Under assumptions

aincreasing, o'(r) = |r]*, |o(r)| < C ((;AS(r) + 1) , @'(r)>-C
there exists a solution (x, w) to the (Cauchy problem) for

Xt +Aa(w) =0 ae inQx(0,T)
Oxt +Ax+o(x)=w ae inQ2x(0,T)

fulfilling the energy identity for all 0 <s<t< T

E(x(1)

5/:/Q|xf|2+/st/ﬂo/(w)lvw|2+%/Q|Vx(f)|2+/ﬂ<g(x(f))

E(x(s))
! / VxR + / 3(x(s))-
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Existence results

The case § > 0: Existence result

Theorem |
Under assumptions

aincreasing, o'(r) = |r]*, |o(r)| < C ((;AS(r) + 1) , @'(r)>-C
there exists a solution (x, w) to the (Cauchy problem) for

(xt + Aa(w) =0 ae. inQ2x(0,T)) xw
(Oxe +Ax+d(x)=w ae inQx(0,T)) xx:

fulfilling the energy identity foral 0 <s<t< T

E(x(1)

5/:/Q|xf|2+/st/ﬂo/(w)lvw|2+%/Q|Vx(f)|2+/ﬂ<g(x(f))

E(x(s))
! / VxR + / 3(x(s))-
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Existence results

The case § = 0: Existence result

A priori estimates for § = 0:
w2, 7:m10)) + XNl 20, 712 Lo 0, T:H1 (@) F 190D 100 (0, Ti11(0)) < G,
IXtll oo (0, 73w =250 @)y F l(W)lLep (0,170 () < €

Passage to the limit as § \, 0 and m — oo, p — oo in

xt + Alam(w)) =0 am truncation of «
Oxt + Ax + ou(x) = w ¢, truncation of ¢
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Existence results

The case § = 0: Existence result

Theorem Il
Under assumptions

aincreasing, o(r) = |, [6(r) < C (BN +1), ¢'(r)=-C
3 a solution (x, w) to the (Cauchy problem) for the weak formulation
w2 (X6 V) ooty + w2 (A(@(W)), V) oy = 0 for all v€ W>5(Q) ae. in (0, T),

AX+o(x) = w ae. inQx (0, 7).
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Existence results

The case § = 0: Existence result

Theorem Il
Under assumptions

aincreasing, o(r) = |, [6(r) < C (BN +1), ¢'(r)=-C
3 a solution (x, w) to the (Cauchy problem) for the weak formulation
w2 (X6 V) ooty + w2 (A(@(W)), V) oy = 0 for all v€ W>5(Q) ae. in (0, T),

AX+o(x) = w ae. inQx (0, 7).

» Very weak formulation: it's not possible to prove energy identity.
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Existence results

The case § = 0: Existence result

Theorem Il
Under assumptions

aincreasing, o(r) = |, [6(r) < C (BN +1), ¢'(r)=-C
3 a solution (x, w) to the (Cauchy problem) for the weak formulation
w2 (X6 V) ooty + w2 (A(@(W)), V) oy = 0 for all v€ W>5(Q) ae. in (0, T),
Ax+o(x) =w a.e. in Q2 x (0, 7).

» Very weak formulation: it's not possible to prove energy identity.

» Conditions on ¢ might be slightly weakened.
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Global attractor for § > 0

Back to the viscous problem

Existence of a solution (x, w) to

Xt +Aa(w) =0 ae inQx(0,T)

Oxt +Ax+ ¢(x) =w ae inQ2x(0,T)
fulfilling the energy identity forall 0 <s <t < T

5 [* [+ [ amiow + o) = £xis)):
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Global attractor for § > 0

Back to the viscous problem

Existence of a solution (x, w) to

Xt +Aa(w) =0 ae inQx(0,T)

Oxt +Ax+ ¢(x) =w ae inQ2x(0,T)
fulfilling the energy identity forall 0 <s <t < T

5 [* [+ [ amiow + o) = £xis)):

> Under these general assumptions, uniqueness not known.
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Global attractor for § > 0

Back to the viscous problem

Existence of a solution (x, w) to

Xt +Aa(w) =0 ae inQx(0,T)

Oxt +Ax+ ¢(x) =w ae inQ2x(0,T)
fulfilling the energy identity forall 0 <s <t < T

5 [* [+ [ amiow + o) = £xis)):

> Under these general assumptions, uniqueness not known.

> Energy identity is the starting point for the long-time analysis, i.e. study
of the behaviour for t — oo of a family of trajectories (starting from a
bounded set of initial data): convergence to an invariant compact set
(“attractor")?
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Global attractor for § > 0

Back to the viscous problem

Existence of a solution (x, w) to

Xt +Aa(w) =0 ae inQx(0,T)

Oxt +Ax+ ¢(x) =w ae inQ2x(0,T)
fulfilling the energy identity forall 0 <s <t < T

5 [* [+ [ amiow + o) = £xis)):

> Under these general assumptions, uniqueness not known.

> Energy identity is the starting point for the long-time analysis, i.e. study
of the behaviour for t — oo of a family of trajectories (starting from a
bounded set of initial data): convergence to an invariant compact set
(“attractor")?

> Need for a theory of global attractors for (autonomous) dynamical
systems without uniqueness
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Global attractor for § > 0

Back to the viscous problem

Existence of a solution (x, w) to

Xt +Aa(w) =0 ae inQx(0,T)

Oxt +Ax+ ¢(x) =w ae inQ2x(0,T)
fulfilling the energy identity forall 0 <s <t < T

5 [* [+ [ amiow + o) = £xis)):

> Under these general assumptions, uniqueness not known.

> Energy identity is the starting point for the long-time analysis, i.e. study
of the behaviour for t — oo of a family of trajectories (starting from a
bounded set of initial data): convergence to an invariant compact set
(“attractor")?

> Need for a theory of global attractors for (autonomous) dynamical
systems without uniqueness

» Various possibilities: [Sell '73,’96], [Chepyzhov & Vishik '02], [Melnik &
Valero '02], [Ball '97,’04]
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Global attractor for § > 0

Back to the viscous problem

Existence of a solution (x, w) to

Xt +Aa(w) =0 ae inQx(0,T)

Oxt +Ax+ ¢(x) =w ae inQ2x(0,T)
fulfilling the energy identity forall 0 <s <t < T

5 [* [+ [ amiow + o) = £xis)):

> Under these general assumptions, uniqueness not known.

> Energy identity is the starting point for the long-time analysis, i.e. study
of the behaviour for t — oo of a family of trajectories (starting from a
bounded set of initial data): convergence to an invariant compact set
(“attractor")?

> Need for a theory of global attractors for (autonomous) dynamical
systems without uniqueness

» Various possibilities: [Sell '73,’96], [Chepyzhov & Vishik '02], [Melnik &
Valero '02], [Ball '97,’04]

We have used Ball’s theory of generalized semiflows.
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Global attractor for § > 0

Generalized Semiflows: definition

Phase space: a metric space (X, dx)

A generalized semiflow S on X is a family of maps g : [0,+c0) — X

( ), s t.
Vgo € X Jat least one g € S with g(0) = go (Existence)
VgeSandT>0,themapg™(-) :=g(-+7)€S (Translation invar.)

Vg, he S and t > 0 with h(0) = g(t), then z € S, where
_ | &) fo<T<t, .

z(1) = { hr—t) ift<n (Concatenation)

If {g.} C S and g,(0) — go, Isubsequence {g,, } and g € S

s.t. g(0) = go and gn, (t) — g(t) for all t > 0. (U.s.c. w.r.t. init. data)

Riccarda Rossi

On the Cahn-Hilliard equation with a chemical potential dependent mobility



Global attractor for 6 > 0

Global attractor for generalized semiflows

Definition

A set A C X is a global attractor for a generalized semiflow S if:
& A is compact
& A is invariant under the semiflow

& A attracts the bounded sets of X’ (w.r.t. the Hausdorff
semidistance of X)
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Global attractor for § > 0

Global attractor for generalized semiflows

Definition

A set A C X is a global attractor for a generalized semiflow S if:
& A is compact
& A is invariant under the semiflow

& A attracts the bounded sets of X’ (w.r.t. the Hausdorff
semidistance of X)

Theorem (Ball’97)
Assume that

» S is asymptotically compact, i.e. for all {g,} C S with {g,(0)} bounded
and for all t, — oo, 3 a converging subsequence {gn, (tn, };

» S has a Lyapunov functional,
> the set of the stationary points of S is bounded in (X, dx).
Then, S has a (unique) global attractor A.
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Global attractor for § > 0

The case § > 0: set-up for the long-time analysis

Existence of a solution (x, w) to

Xt +Aa(w) =0 ae. inQ2x(0,T)
Oxt +Ax+é(x) =w ae inQx(0,T)

fulfilling the energy identity forall 0 <s <t < T

5[ [ bt [ [ o + o) = o).
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Global attractor for § > 0

The case § > 0: set-up for the long-time analysis

Phase space:

X =D(E) = {x e H(Q) : o(x) € L(Q)}
dx (x1,x2) == X1 — Xellmey + 16(x1) — 60x2)ll11 @)

Existence of a solution (x, w) to

Xt +Aa(w) =0 ae inQx(0,T)
Oxt +AxX+o(x)=w ae inQ2x(0,T)

fulfilling the energy identity foral 0 <s<t< T

5[ [l [ @l v +eae) = £,
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Global attractor for § > 0

The case § > 0: set-up for the long-time analysis

Phase space:
X =D(E)={x e H(Q) : o(x) € L(Q)}
dx(x1, x2) = IIx1 — xallmg) + ll6(x1) — d0x2) 2@

Solution notion: § is the set of all x's s.t. 3w with

Xt +Aa(w)=0 ae inQ2x(0,T)
Oxt+Ax+é(x) =w ae inQx(0,T)

and energy identity forall 0 < s <t < T

5 / / el + / / w)|Vwl + E(x(1)) = E(x(s)).
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Global attractor for § > 0

The case § > 0: long-time analysis

Facts
Under assumptions

aincreasing, o'(r) = |r??, |é(r)| < C (a(r) + 1) e
3 C, s.t. the map w — a(w)w — Cu|r[**? is convex

then

» S is a generalized semiflow (proof of upper semicontinuity uses the
technical assumption on « to pass to the limit in the energy identity)
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Global attractor for § > 0

The case § > 0: long-time analysis

Facts
Under assumptions

aincreasing, o'(r) = |r??, |é(r)| < C (a(r) + 1) e
3 C, s.t. the map w — a(w)w — Cu|r[**? is convex

then

» S is a generalized semiflow (proof of upper semicontinuity uses the
technical assumption on « to pass to the limit in the energy identity)

» S is asymptotically compact
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Global attractor for § > 0

The case § > 0: long-time analysis

Facts

Under assumptions
aincreasing, o'(r) = |r??, |é(r)| < C (a(r) + 1) e
3 C, s.t. the map w — a(w)w — Cu|r[**? is convex

then

» S is a generalized semiflow (proof of upper semicontinuity uses the
technical assumption on « to pass to the limit in the energy identity)

» S is asymptotically compact

> the energy £ is a Lyapunov function for S.

Riccarda Rossi

On the Cahn-Hilliard equation with a chemical potential dependent m



Global attractor for § > 0

The case § > 0: existence of the global attractor

Theorem (I11)

Under assumptions

aincreasing, o'(r) = |r]*, |o(r)| < C ((Z(r) + 1) , ¢'(r)>-C

3 C, s.t. the map w — a(w)w — Co|r|?P*? is convex

Jm 9] = oo, lim_d(1) =~y
ET &' (r) = im @' (r) = +oo

S admits a global attractor.
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Global attractor for § > 0

The case § > 0: existence of the global attractor

Theorem (I11)
Under assumptions
aincreasing, o'(r) = |r]*, |o(r)| < C ((Z(r) + 1) , 9'(r)>-C
3 C, s.t. the map w — a(w)w — Co|r|?P*? is convex
IIT o(r) =400, lim o(r) = —o0,

lim ¢'(r) = lim #'(r) = +oo  (enhanced coercivity)

r—-+oo

S admits a global attractor.
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Global attractor for § > 0

Ideas of the proof
Assumptions:
aincreasing,  o/(1) % [r[® [6(n)] < € (3(1) +1).

|2p+2

3 Ca s.t. the map w — a(w)w — Co|r is convex

Nim ¢(r) =400, lim ¢(r) = —oo0, lim ¢'(r) = lim ¢(r)=+o0
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Global attractor for § > 0

Ideas of the proof
Assumptions:
aincreasing,  o/(1) % [r[® [6(n)] < € (3(1) +1).

[2P+2 is convex

3 Ca s.t. the map w — a(w)w — Co|r
lim ¢(r) =400, lim ¢(r)=—o0o, lim ¢'(r)= lim ¢'(r) = +co
r—+oo r— —0o0o r—-+oo r— —oo
Proof: show boundedness in (X', dx) of set of stationary points, i.e. sol.’s of

Alae(w)) =0 a.e. inQ,
AX+d(X) =W ae inQ

such that
m(x) < mo.
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Global attractor for § > 0

Ideas of the proof
Assumptions:
aincreasing,  o/(1) % [r[® [6(n)] < € (3(1) +1).

[2P+2 is convex

3 Ca s.t. the map w — a(w)w — Co|r
lim ¢(r) =400, lim ¢(r)=—o0o, lim ¢'(r)= lim ¢'(r) = +co
r—+oo r— —0o0o r—-+oo r— —oo
Proof: show boundedness in (X', dx) of set of stationary points, i.e. sol.’s of

(Alae(w)) =0 ae. inQ,) = Vw=0
(AX+o(x) =w ae inQ)  x(X - m(x))

such that
m(x) < mo.
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Global attractor for § > 0

Ideas of the proof

Assumptions:

aincreasing,  o/(1) % [r[® [6(n)] < € (3(1) +1).

[2P+2 is convex

3 Ca s.t. the map w — a(w)w — Co|r
lim ¢(r) =400, lim ¢(r)=—o0o, lim ¢'(r)= lim ¢'(r) = +co
r—+oo r— —0o0o r—-+oo r— —oo
Proof: show boundedness in (X', dx) of set of stationary points, i.e. sol.’s of

(A((w)) =0 a.e. inQ,) = Vw=0
(AX+o(x) =w ae inQ) x(x—m(Y)= [o|VRI*+ [oe(X)(X —m(x)) <0
such that
m(X) < mo.
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Global attractor for § > 0

Ideas of the proof

Assumptions:

aincreasing, o/(r) =|r|?* |o(r)| < C (a(r) + 1) ,

[2P+2 is convex

3 Cq s.t. the map w — a(w)w — Cu|r
lim ¢(r) =400, lim ¢(r)= —oco, lim ¢'(r)= lim ¢ (r) = +co
r—-+oo r——oo r—+oo r— —oo
Proof: show boundedness in (X', dv) of set of stationary points, i.e. sol.’s of

(A(a(w)) =0 ae inQ,) = Vw=0
(Ax+o(x)=w ae inQ) x(x—m(X)= JolVXI>+ [qo(x)(x—m(x)) <0

such that
m(x) < mo.
Enhanced coercivity gives (cf. [Miranville-Zelik’04])

/ 16(0)] < Crmg / HR)X — m(R) + Corme
Q Q
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Global attractor for § > 0

Ideas of the proof
Assumptions:
aincreasing, o'(r) =|r[?? |o(r)] < C (a(r) + 1) ,

[2P+2 is convex

3 Cq s.t. the map w — a(w)w — Cu|r
lim ¢(r) =400, lim ¢(r)= —oco, lim ¢'(r)= lim ¢ (r) = +co
r—-+oo r——oo r—+oo r— —oo
Proof: show boundedness in (X', dv) of set of stationary points, i.e. sol.’s of

(A(a(w)) =0 ae inQ,) = Vw=0
(Ax+o(x)=w ae inQ) x(x—m(X)= JolVXI>+ [qo(x)(x—m(x)) <0

such that
m(x) < mo.
Enhanced coercivity gives (cf. [Miranville-Zelik’04])

[ 16001 < Cum [ 60 = m(D) + Carmg
Q Q
hence we obtain

VX2 + IVWlli2g@) + Im(w) = m(¢(X)] < C = (Xl + [17llm@) < C
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Global attractor for § > 0

Ideas of the proof
Assumptions:
aincreasing, o'(r) =|r[?? |o(r)] < C (a(r) + 1) ,

[2P+2 is convex

3 Cq s.t. the map w — a(w)w — Cu|r
lim ¢(r) =400, lim ¢(r)= —oco, lim ¢'(r)= lim ¢ (r) = +co
r—-+oo r——oo r—+oo r— —oo
Proof: show boundedness in (X', dv) of set of stationary points, i.e. sol.’s of

(A(a(w)) =0 ae inQ,) = Vw=0
(Ax+o(x)=w ae inQ) x(x—m(X)= JolVXI>+ [qo(x)(x—m(x)) <0

such that
m(x) < mo.
Enhanced coercivity gives (cf. [Miranville-Zelik’04])

16601 < G [ 60~ m() + Com
hence we obtain
IVXll20) + VWl 2(q) + Im(w) = m(¢(3X))| < C = [IXllpa) + W) < C.

We prove ||<$()'<)||L1(Q) < C, hence ¥ is in a bounded set in the phase space (X, dx).
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Exponential attractor for § > 0

Enhanced regularity and uniqueness under more restrictive conditions

Theorem (1V)

Under assumptions
aincreasing, o'(r) = |r|*, for p € [0,1]
6(nI < € () +1),
im_o(r) =400, lim_g(r) = —s, lim_¢/(1)= lim_¢'(r) = +0

|¢'(r)] < C(1+ |r[*)

we have
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Exponential attractor for § > 0

Enhanced regularity and uniqueness under more restrictive conditions

Theorem (1V)
Under assumptions
aincreasing, o'(r) = |r|*, for p € [0,1]
6(nI < € () +1),
im 6(r) = 400, lim ¢(r) = —oo, lim ¢'(r) = lim ¢'(r) = +oc
#'(n] < C+1rf*)
we have

» enhanced regularity of solutions

X € L®(r, T; H*(Q)) N H' (7, T; H'(Q)) forall 7> 0
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Exponential attractor for § > 0

Enhanced regularity and uniqueness under more restrictive conditions

Theorem (1V)
Under assumptions
aincreasing, o'(r) = |r|*, for p € [0,1]
6(nI < € () +1),
im 6(r) = 400, lim ¢(r) = —oo, lim ¢'(r) = lim ¢'(r) = +oc
#'(n] < C+1rf*)
we have

» enhanced regularity of solutions

X € L®(r, T; H*(Q)) N H' (7, T; H'(Q)) forall 7> 0

> uniqueness from initial conditions yo € H?(Q): semiflow ~ semigroup
on HY(Q)
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Exponential attractor for

Exponential attractors

Exponential attractor [Eden-Foias-Nicolaenko-Temam’94]

A set M C H'(R) is an exponential attractor for a semigroup S if:
& M is compact
& M has finite fractal dimension
& M is POSITIVELY invariant under the semigroup

& M attracts the bounded sets of H'(Q) EXPONENTIALLY
fast
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Exponential attractors

Exponential attractor [Eden-Foias-Nicolaenko-Temam’94]

A set M C H'(R) is an exponential attractor for a semigroup S if:
& M is compact
& M has finite fractal dimension
& M is POSITIVELY invariant under the semigroup

& M attracts the bounded sets of H'(Q) EXPONENTIALLY
fast

Facts:
IM = dglobal attractor A & AC M
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Exponential attractors

Exponential attractor [Eden-Foias-Nicolaenko-Temam’94]

A set M C H'(R) is an exponential attractor for a semigroup S if:
& M is compact
& M has finite fractal dimension
& M is POSITIVELY invariant under the semigroup

& M attracts the bounded sets of H'(Q) EXPONENTIALLY
fast

Facts:

IM = dglobal attractor A & AC M

= A has finite fractal dimension
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Exponential attractor for 6 > 0 under more restrictive conditions

Theorem (V)

Assume
aincreasing, o'(r) = |r|*, for p € [0,1]
6(r) < € (8(n) +1),
lim_¢(r) = +o0, lim_(r) = —o0, lim_¢'(r)= lim ¢(r) = +oo

r— o0
9/ (Nl < CL+r*)
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Exponential attractor for § > 0

Exponential attractor for 6 > 0 under more restrictive conditions

Theorem (V)

Assume

aincreasing, o'(r) = |r|*, for p € [0,1]

6(1I < € () +1),
lim ¢(r) =400,  lim ¢(r) = —o0, lim ¢'(r)= lim ¢'(r) = +o0

@'(n] < C(+1r[*)

then the dynamical system (H'(Q),S) has an exponential attractor M.
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Exponential attractor for

Exponential attractor for 6 > 0 under more restrictive conditions

Theorem (V)
Assume
aincreasing, o'(r) = |r|*, for p € [0,1]
6(1I < € () +1),
Jim ¢(r) = 400, lim ¢(r) = o0, lim ¢'(r) = lim ¢'(r) = +oo

@'(n] < C(+1r[*)

then the dynamical system (H'(Q),S) has an exponential attractor M.

Proof: uses the method of ¢-trajectories [Malek-Prazak’02].

Riccarda Rossi
On the Cahn-Hilliard equation with a chemical potential dependent mobility




	Introduction
	A priori estimates
	Existence results
	Global attractor for >0
	Exponential attractor for >0

