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The equation
We consider the

generalized (viscous) Cahn-Hilliard equation:

χt −∆(α(δχt −∆χ + φ(χ))) = 0 in Ω× (0, T ),

I Ω ⊂ RN , N = 1, 2, 3, a bdd smooth domain, (0, T ) a time interval;
I α : D(α) ⊂ R → R is strictly increasing and differentiable;
I δ ≥ 0 a constant;
I Typically φ(χ) = χ3 − χ (derivative of the double-well potential)

If α is linear,

α(r) := κr ∀r ∈ R, (κ > 0  mobility)

Both for δ = 0 and δ > 0: wide literature on well-posedness (for various
variants of the model), long-time behaviour, dynamics of pattern formation..
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Gurtin’s generalized Cahn-Hilliard equation
• M.E. Gurtin [Phys. D ’96] proposed a novel derivation of the Cahn-Hilliard
equations, thus obtaining the

generalized viscous Cahn-Hilliard equation(
χt − div(M(Z)∇w) = 0

w = δ(Z)χt −∆χ + φ(χ)
(GVCHE)

I w chemical potential
I M mobility tensor (symmetric, positive definite)
I M = M(Z), δ = δ(Z), with

constitutive variables: Z = (χ,∇χ, χt , w ,∇w)!

• Several results [Miranville & Bonfoh, Carrive, Cherfils, Grasselli, Piétrus,
Rakotoson, Rougirel, Schimperna, Zelik..]: well-posedness and long-time behaviour
for variants of (GVCHE) (also in the anisotropic case) with periodic and Neumann
b.c., and M(Z) = M, M(χ), constant δ.

• Well-posedness and long-time behaviour for the standard Cahn-Hilliard eq. (viscous

and non-viscous), with a concentration-dependent mobility tensor: [Barrett, Blowey,

Bonetti, Colli, Dreyer, Gilardi, Elliott, Novick-Cohen, Garcke, Schimperna,

Sprekels..].
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A chemical potential dependent mobility

χt −∆(α(δχt −∆χ + φ(χ))) = 0 in Ω× (0, T ),

is a particular case of (GVCHE):(
χt − div(M(Z)∇w) = 0

w = δχt −∆χ + φ(χ)
in Ω× (0, T ),

with δ(Z) = δ, M(Z) = M(w),

(admissible, α′ > 0!), i.e., a chemical potential-dependent mobility tensor!!!!
• dettagli: conservazione della massa (natural boundary conditions)
•
• citare i lavori di Rossi su well-posedness results e long-time behaviour for two
different I.B.V. corresponding to two choices of the mobility law α.
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with δ(Z) = δ, M(Z) = M(w) := α′(w)I,

(admissible, α′ > 0!), i.e., a chemical potential-dependent mobility tensor!!

• no-flux boundary conditions for χ and w : mass conservation for χ

• [R.’05 & ’06] well-posedness and long-time behaviour results for two
different boundary value problems corresponding to two choices of the
mobility law α, in the case φ(χ) = χ3 − χ.
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Analytical difficulties

Decouple the system(
χt −∆α(w) = 0

δχt −∆χ + φ(χ) = w
in Ω× (0, T )

+ no flux boundary conditions

∂nχ = ∂nw = 0 in ∂Ω× (0, T )

I nonlinearity acting on w + no derivative on w : no compactness, how to
pass to the limit in α(w)?

BY MONOTONICITY of α

I Only ∇w is estimated from the first equation (using SUITABLE
COERCIVITY of α) How to get a full estimate on w?? COMBINED
ASSUMPTIONS ON α and φ

I Case δ = 0 even more difficult: quasi-stationary case, you need to recover
estimates for χt from the first equation. How?

COMBINED
ASSUMPTIONS ON α and φ

Aim: generalize the choices for α and φ in [R.’05 & ’06]
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Outlook

χt + A(α(δχt + Aχ + φ(χ))) = 0 in Ω× (0, T ),

with A: Laplacian with homogeneous Neumann boundary conditions

Main assumptions on α and φ:

α : R → R strictly increasing, differentiable,

∃ p ≥ 0, ∃C1, C2 > 0 : ∀ r ∈ R C1

“
|r |2p + 1

”
≤ α′(r) ≤ C2

“
|r |2p + 1

”
;

φ ∈ C2(R; R), ∃C3 > 0 : ∀ r ∈ R |φ(r)| ≤ C3

“bφ(r) + 1
”

(bφ primitive of φ),

∃C4 > 0 : ∀ r ∈ R φ′(r) ≥ −C4

I A priori estimates and existence result for δ = 0 and δ > 0

I Global attractor for δ > 0

I Uniqueness, regularizing effect, and exponential attractor for δ > 0
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A priori estimates (I)
Assumptions:

α increasing, α′(r) ≈ |r |2p |φ(r)| ≤ C
“bφ(r) + 1

”
, φ′(r) ≥ −C

Energy estimate:Z t

0

Z
Ω

α′(w)|∇w |2+δ

Z t

0
‖χt‖2

L2(Ω)
+

1

2
‖∇χ(t)‖2

L2(Ω)
+

Z
Ω

bφ (χ(t)) =
1

2
‖∇χ(0)‖2

L2(Ω)
+

Z
Ω

bφ (χ(0))

whence

δ1/2‖χt‖L2(0,T ;L2(Ω))+‖∇w‖L2(0,T ;L2(Ω))+‖∇χ‖L∞(0,T ;L2(Ω))+‖bφ(χ)‖L∞(0,T ;L1(Ω)) ≤ C

Conservation of mass:(
1
|Ω|

R
Ω χt = 0 ⇒ 1

|Ω|
R
Ω χ(t) = 1

|Ω|
R
Ω χ(0)

1
|Ω|

R
Ω φ(χ(t)) ≡ 1

|Ω|
R
Ω w(t)

Full estimate for χ:“
‖∇χ‖L∞(0,T ;L2(Ω)) + |m(χ(t))|

”
⇒ ‖χ‖L∞(0,T ;H1(Ω))
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L2(Ω)
+

Z
Ω

bφ (χ(t)) =
1

2
‖∇χ(0)‖2

L2(Ω)
+

Z
Ω

bφ (χ(0))

whence

δ1/2‖χt‖L2(0,T ;L2(Ω))+‖∇w‖L2(0,T ;L2(Ω))+‖∇χ‖L∞(0,T ;L2(Ω))+‖bφ(χ)‖L∞(0,T ;L1(Ω)) ≤ C
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1
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R
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|Ω|
R
Ω χ(t) = 1

|Ω|
R
Ω χ(0)

1
|Ω|

R
Ω φ(χ(t)) ≡ 1

|Ω|
R
Ω w(t)

Full estimate for χ:“
‖∇χ‖L∞(0,T ;L2(Ω)) + |m(χ(t))|

”
⇒ ‖χ‖L∞(0,T ;H1(Ω))
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A priori estimates (II)
Assumptions:

α increasing, α′(r) ≈ |r |2p |φ(r)| ≤ C
“bφ(r) + 1

”
, φ′(r) ≥ −C

PDE system:
χt + Aα(w) = 0

δχt + Aχ + φ(χ) = w

Known estimates:8<: δ1/2‖χt‖L2(0,T ;L2(Ω)) + ‖∇w‖L2(0,T ;L2(Ω)) + ‖χ‖L∞(0,T ;H1(Ω)) + ‖bφ(χ)‖L∞(0,T ;L1(Ω)) ≤ C ,

m(φ(χ(t))) = m(w(t))

Full estimate for w : need estimate for |m(w)| = |m(φ(χ))|. Use

|φ(χ)| ≤ C(bφ(χ) + 1), hence

‖bφ(χ)‖L∞(0,T ;L1(Ω))) ≤ C ⇒ ‖m(w)‖L∞(0,T ) = ‖m(φ(χ)‖L∞(0,T ) ≤ C

⇒ ‖w‖L2(0,T ;H1(Ω)) ≤ C .

Elliptic regularity estimate: from φ′(r) ≥ −C , we have φ(χ) =

monotonez }| {
β(χ) +

Lipschitzz }| {
σ(χ)“

‖φ(χ)‖L2(0,T ;L2(Ω)) + ‖Aχ‖L2(0,T ;L2(Ω))

”
≤ C ⇒ ‖χ‖L2(0,T ;H2(Ω)) ≤ C .
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A priori estimates (III)
Assumptions:

α increasing, α′(r) ≈ |r |2p |φ(r)| ≤ C
“bφ(r) + 1

”
, φ′(r) ≥ −C

PDE system:
χt + Aα(w) = 0

δχt + Aχ + φ(χ) = w

Known estimates:8<: δ1/2‖χt‖L2(0,T ;L2(Ω)) + ‖w‖L2(0,T ;H1(Ω)) + ‖χ‖L∞(0,T ;H1(Ω)) + ‖bφ(χ)‖L∞(0,T ;L1(Ω)) ≤ C ,

‖χ‖L2(0,T ;H2(Ω)) + ‖φ(χ)‖L2(0,T ;L2(Ω)) + ‖m(w)‖L∞(0,T ) ≤ C

Estimate for χt in the case δ = 0: estimate χt arguing by comparison. Need estimate
for α(w) ≈ w2p+1.

Energy estimate
R t
0

R
Ω α′(w)|∇w |2 ≤ C

α′(w) ≈ w2p

ff
⇒ ‖∇(wp+1)‖L2(0,T ;L2(Ω)) ≤ C

Since ‖m(w)‖L∞(0,T ) ≤ C , we have ‖wp+1‖L2(0,T ;H1(Ω)) ≤ C , hence

‖wp+1‖L2(0,T ;L6(Ω)) ≤ C , hence

‖α(w)‖Lρp (0,T ;Lκp (Ω)) ≤ C , with ρp =
2p + 2

2p + 1
, κp =

6p + 6

2p + 1
.
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‖α(w)‖Lρp (0,T ;Lκp (Ω)) ≤ C , with ρp =
2p + 2

2p + 1
, κp =

6p + 6

2p + 1
.

Riccarda Rossi

On the Cahn-Hilliard equation with a chemical potential dependent mobility



Introduction A priori estimates Existence results Global attractor for δ > 0 Exponential attractor for δ > 0

A priori estimates (IV)

Assumptions:

α increasing, α′(r) ≈ |r |2p |φ(r)| ≤ C
“bφ(r) + 1

”
, φ′(r) ≥ −C

PDE system:
χt + Aα(w) = 0

Aχ + φ(χ) = w

Known estimates:8<: δ1/2‖χt‖L2(0,T ;L2(Ω)) + ‖w‖L2(0,T ;H1(Ω)) + ‖χ‖L∞(0,T ;H1(Ω)) + ‖bφ(χ)‖L∞(0,T ;L1(Ω)) ≤ C ,

‖χ‖L2(0,T ;H2(Ω)) + ‖φ(χ)‖L2(0,T ;L2(Ω)) + ‖m(w)‖L∞(0,T ) + ‖α(w)‖Lρp (0,T ;Lκp (Ω)) ≤ C

From a comparison we thus have

‖χt‖Lρp (0,T ;W−2,κp (Ω))
≤ C , ρp > 1!!
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The case δ > 0: passage to the limit

χt + Aα(w) = 0

δχt + Aχ + φ(χ) = w

A priori estimates for δ > 0:8<:
‖χt‖L2(0,T ;L2(Ω)) + ‖w‖L2(0,T ;H1(Ω)) + ‖χ‖L2(0,T ;H2(Ω))∩L∞(0,T ;H1(Ω)) ≤ C ,

‖bφ(χ)‖L∞(0,T ;L1(Ω)) + ‖φ(χ)‖L2(0,T ;L2(Ω)) + ‖α(w)‖Lρp (0,T ;Lκp (Ω)) ≤ C

Approximate problem:

χt + A(αm(w)) = 0 αm truncation of α

δχt + Aχ + φµ(χ) = w φµ truncation of φ

In the passage to the limit as m →∞ and µ →∞, identification of the weak
limit of α(wm,µ) via a monotonicity argument.

Riccarda Rossi
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The case δ > 0: existence result

Theorem I
Under assumptions

α increasing, α′(r) ≈ |r |2p, |φ(r)| ≤ C
“bφ(r) + 1

”
, φ′(r) ≥ −C

there exists a solution (χ, w) to the (Cauchy problem) for

χt + Aα(w) = 0 a.e. in Ω× (0, T )

δχt + Aχ + φ(χ) = w a.e. in Ω× (0, T )

fulfilling the energy identity for all 0 ≤ s ≤ t ≤ T

δ

Z t

s

Z
Ω

|χt |2 +

Z t

s

Z
Ω

α′(w)|∇w |2 +

E(χ(t))z }| {
1

2

Z
Ω

|∇χ(t)|2 +

Z
Ω

bφ(χ(t))

=

E(χ(s))z }| {
1

2

Z
Ω

|∇χ(s)|2 +

Z
Ω

bφ(χ(s)).
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The case δ = 0: Existence result

A priori estimates for δ = 0:8<:
‖w‖L2(0,T ;H1(Ω)) + ‖χ‖L2(0,T ;H2(Ω))∩L∞(0,T ;H1(Ω)) + ‖bφ(χ)‖L∞(0,T ;L1(Ω)) ≤ C ,

‖χt‖Lρp (0,T ;W−2,κp (Ω))
+ ‖α(w)‖Lρp (0,T ;Lκp (Ω)) ≤ C

Passage to the limit as δ ↘ 0 and m →∞, µ →∞ in

χt + A(αm(w)) = 0 αm truncation of α

δχt + Aχ + φµ(χ) = w φµ truncation of φ
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The case δ = 0: Existence result

Theorem II
Under assumptions

α increasing, α′(r) ≈ |r |2p, |φ(r)| ≤ C
“bφ(r) + 1

”
, φ′(r) ≥ −C

∃ a solution (χ, w) to the (Cauchy problem) for the weak formulation

W−2,κp 〈χt , v〉
W

2,κ′p + W−2,κp 〈A(α(w)), v〉
W

2,κ′p = 0 for all v ∈ W 2,κ′p (Ω) a.e. in (0, T ),

Aχ + φ(χ) = w a.e. in Ω× (0, T ).

I Very weak formulation: it’s not possible to prove energy identity.

I Conditions on φ might be slightly weakened.
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Back to the viscous problem

Existence of a solution (χ, w) to

χt + Aα(w) = 0 a.e. in Ω× (0, T )

δχt + Aχ + φ(χ) = w a.e. in Ω× (0, T )

fulfilling the energy identity for all 0 ≤ s ≤ t ≤ T

δ

Z t

s

Z
Ω
|χt |2 +

Z t

s

Z
Ω

α′(w)|∇w |2 + E(χ(t)) = E(χ(s)).

I Under these general assumptions, uniqueness not known.

I Energy identity is the starting point for the long-time analysis, i.e. study
of the behaviour for t →∞ of a family of trajectories (starting from a
bounded set of initial data): convergence to an invariant compact set
(“attractor”)?

I Need for a theory of global attractors for (autonomous) dynamical
systems without uniqueness

I Various possibilities: [Sell ’73,’96], [Chepyzhov & Vishik ’02], [Melnik &

Valero ’02], [Ball ’97,’04]

We have used Ball’s theory of generalized semiflows.
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Back to the viscous problem

Existence of a solution (χ, w) to

χt + Aα(w) = 0 a.e. in Ω× (0, T )
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I Need for a theory of global attractors for (autonomous) dynamical
systems without uniqueness

I Various possibilities: [Sell ’73,’96], [Chepyzhov & Vishik ’02], [Melnik &

Valero ’02], [Ball ’97,’04]

We have used Ball’s theory of generalized semiflows.
Riccarda Rossi

On the Cahn-Hilliard equation with a chemical potential dependent mobility



Introduction A priori estimates Existence results Global attractor for δ > 0 Exponential attractor for δ > 0

Generalized Semiflows: definition

Phase space: a metric space (X , dX )

A generalized semiflow S on X is a family of maps g : [0, +∞) → X
(“solutions”), s. t.

∀ g0 ∈ X ∃ at least one g ∈ S with g(0) = g0 (Existence)

∀ g ∈ S and τ ≥ 0, the map gτ (·) := g(·+ τ) ∈ S (Translation invar.)

∀ g , h ∈ S and t ≥ 0 with h(0) = g(t), then z ∈ S, where

z(τ) :=


g(τ) if 0 ≤ τ ≤ t,
h(τ − t) if t < τ,

(Concatenation)

If {gn} ⊂ S and gn(0) → g0, ∃ subsequence {gnk } and g ∈ S
s.t. g(0) = g0 and gnk (t) → g(t) for all t ≥ 0. (U.s.c. w.r.t. init. data)
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Global attractor for generalized semiflows

Definition
A set A ⊂ X is a global attractor for a generalized semiflow S if:

♣ A is compact

♣ A is invariant under the semiflow

♣ A attracts the bounded sets of X (w.r.t. the Hausdorff
semidistance of X )

Theorem (Ball’97)

Assume that

I S is asymptotically compact, i.e. for all {gn} ⊂ S with {gn(0)} bounded
and for all tn →∞, ∃ a converging subsequence {gnk (tnk };

I S has a Lyapunov functional;

I the set of the stationary points of S is bounded in (X , dX ).

Then, S has a (unique) global attractor A.

Riccarda Rossi

On the Cahn-Hilliard equation with a chemical potential dependent mobility



Introduction A priori estimates Existence results Global attractor for δ > 0 Exponential attractor for δ > 0
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The case δ > 0: set-up for the long-time analysis

Phase space:

X = D(E) = {χ ∈ H1(Ω) : bφ(χ) ∈ L1(Ω)}

dX (χ1, χ2) := ‖χ1 − χ2‖H1(Ω) + ‖bφ(χ1)− bφ(χ2)‖L1(Ω)

Existence of a solution (χ, w) to

χt + Aα(w) = 0 a.e. in Ω× (0, T )

δχt + Aχ + φ(χ) = w a.e. in Ω× (0, T )

fulfilling the energy identity for all 0 ≤ s ≤ t ≤ T

δ

Z t

s

Z
Ω

|χt |2 +

Z t

s

Z
Ω

α′(w)|∇w |2 + E(χ(t)) = E(χ(s)).
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The case δ > 0: set-up for the long-time analysis

Phase space:

X = D(E) = {χ ∈ H1(Ω) : bφ(χ) ∈ L1(Ω)}

dX (χ1, χ2) := ‖χ1 − χ2‖H1(Ω) + ‖bφ(χ1)− bφ(χ2)‖L1(Ω)

Solution notion: S is the set of all χ’s s.t. ∃w with

χt + Aα(w) = 0 a.e. in Ω× (0, T )

δχt + Aχ + φ(χ) = w a.e. in Ω× (0, T )

and energy identity for all 0 ≤ s ≤ t ≤ T

δ

Z t

s

Z
Ω

|χt |2 +

Z t

s

Z
Ω

α′(w)|∇w |2 + E(χ(t)) = E(χ(s)).
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The case δ > 0: long-time analysis

Facts
Under assumptions

α increasing, α′(r) ≈ |r |2p, |φ(r)| ≤ C
“bφ(r) + 1

”
, φ′(r) ≥ −C

∃Cα s.t. the map w 7→ α(w)w − Cα|r |2p+2 is convex

then

I S is a generalized semiflow (proof of upper semicontinuity uses the
technical assumption on α to pass to the limit in the energy identity)

I S is asymptotically compact

I the energy E is a Lyapunov function for S.
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I S is asymptotically compact

I the energy E is a Lyapunov function for S.

Riccarda Rossi

On the Cahn-Hilliard equation with a chemical potential dependent mobility



Introduction A priori estimates Existence results Global attractor for δ > 0 Exponential attractor for δ > 0

The case δ > 0: existence of the global attractor

Theorem (III)

Under assumptions

α increasing, α′(r) ≈ |r |2p, |φ(r)| ≤ C
“bφ(r) + 1

”
, φ′(r) ≥ −C

∃Cα s.t. the map w 7→ α(w)w − Cα|r |2p+2 is convex

lim
r→+∞

φ(r) = +∞, lim
r→−∞

φ(r) = −∞,

lim
r→+∞

φ′(r) = lim
r→−∞

φ′(r) = +∞

S admits a global attractor.
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The case δ > 0: existence of the global attractor

Theorem (III)

Under assumptions

α increasing, α′(r) ≈ |r |2p, |φ(r)| ≤ C
“bφ(r) + 1

”
, φ′(r) ≥ −C

∃Cα s.t. the map w 7→ α(w)w − Cα|r |2p+2 is convex

lim
r→+∞

φ(r) = +∞, lim
r→−∞

φ(r) = −∞,

lim
r→+∞

φ′(r) = lim
r→−∞

φ′(r) = +∞ (enhanced coercivity)

S admits a global attractor.
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Ideas of the proof
Assumptions:

α increasing, α′(r) ≈ |r |2p |φ(r)| ≤ C
“bφ(r) + 1

”
,

∃Cα s.t. the map w 7→ α(w)w − Cα|r |2p+2 is convex

lim
r→+∞

φ(r) = +∞, lim
r→−∞

φ(r) = −∞, lim
r→+∞

φ′(r) = lim
r→−∞

φ′(r) = +∞

Proof: show boundedness in (X , dX ) of set of stationary points, i.e. sol.’s of

such that
m(χ̄) ≤ m0.

Enhanced coercivity gives (cf. [Miranville-Zelik’04])Z
Ω
|φ(χ̄)| ≤ C1(m0)

Z
Ω

φ(χ̄)(χ̄−m(χ̄)) + C2(m0)

hence we obtain

‖∇χ̄‖L2(Ω) + ‖∇w‖L2(Ω) + |m(w̄) = m(φ(χ̄))| ≤ C ⇒ ‖χ̄‖H1(Ω) + ‖w̄‖H1(Ω) ≤ C .

We prove ‖bφ(χ̄)‖L1(Ω) ≤ C , hence χ̄ is in a bounded set in the phase space (X , dX ).

Riccarda Rossi

On the Cahn-Hilliard equation with a chemical potential dependent mobility



Introduction A priori estimates Existence results Global attractor for δ > 0 Exponential attractor for δ > 0

Ideas of the proof
Assumptions:

α increasing, α′(r) ≈ |r |2p |φ(r)| ≤ C
“bφ(r) + 1

”
,

∃Cα s.t. the map w 7→ α(w)w − Cα|r |2p+2 is convex

lim
r→+∞

φ(r) = +∞, lim
r→−∞

φ(r) = −∞, lim
r→+∞

φ′(r) = lim
r→−∞

φ′(r) = +∞

Proof: show boundedness in (X , dX ) of set of stationary points, i.e. sol.’s of
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Enhanced regularity and uniqueness under more restrictive conditions

Theorem (IV)

Under assumptions

α increasing, α′(r) ≈ |r |2p, for p ∈ [0, 1]

|φ(r)| ≤ C
“bφ(r) + 1

”
,

lim
r→+∞

φ(r) = +∞, lim
r→−∞

φ(r) = −∞, lim
r→+∞

φ′(r) = lim
r→−∞

φ′(r) = +∞

|φ′(r)| ≤ C(1 + |r |4)

we have

I enhanced regularity of solutions

χ ∈ L∞(τ, T ;H2(Ω)) ∩ H1(τ, T ;H1(Ω)) for all τ > 0

I uniqueness from initial conditions χ0 ∈ H2(Ω): semiflow  semigroup
on H1(Ω)
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Exponential attractors

Exponential attractor [Eden-Foias-Nicolaenko-Temam’94]

A set M⊂ H1(Ω) is an exponential attractor for a semigroup S if:

♣ M is compact

♣ M has finite fractal dimension

♣ M is POSITIVELY invariant under the semigroup

♣ M attracts the bounded sets of H1(Ω) EXPONENTIALLY
fast

Facts:
∃M ⇒ ∃ global attractor A & A ⊂M

⇒ A has finite fractal dimension
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Exponential attractor for δ > 0 under more restrictive conditions

Theorem (V)

Assume

α increasing, α′(r) ≈ |r |2p, for p ∈ [0, 1]

|φ(r)| ≤ C
“bφ(r) + 1

”
,

lim
r→+∞

φ(r) = +∞, lim
r→−∞

φ(r) = −∞, lim
r→+∞

φ′(r) = lim
r→−∞

φ′(r) = +∞

|φ′(r)| ≤ C(1 + |r |4)

then the dynamical system (H1(Ω),S) has an exponential attractor M.

Proof: uses the method of `-trajectories [Málek-Pražák’02].
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