イロト イポト イヨト イヨト

3

Some results on the vanishing viscosity approximation of rate-independent problems

Riccarda Rossi (Università di Brescia)

joint work (in progress) with

Alexander Mielke (WIAS & Humboldt-Universität – Berlin), Giuseppe Savaré (Università di Pavia),

Modèles mathématiques en science des matériaux

Poitiers, 12.06.2008

Riccarda Rossi

Doubly nonlinear evolution equations

$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \text{ in } B' \quad t \in (0, T),$ (DNE)

- B is a (separable) Banach space;
- $\Psi: B \to [0, +\infty]$, with $\Psi(0) = 0$, l.s.c. and **convex**
- ∂ convex analysis subdifferential;
- ▶ $\mathcal{E} : [0, T] \times B \rightarrow (-\infty, +\infty]$ is smooth w.r.t. $t \in (0, T)$
- ▶ ∂_u is the "subdifferential" of \mathcal{E} w.r.t. the second variable:

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 回 ● の Q @

Doubly nonlinear evolution equations

$\partial \Psi(u'(t)) + \mathbb{D}\mathcal{E}(t, u(t)) \ni 0 \text{ in } B' \quad t \in (0, T),$ (DNE)

- B is a (separable) Banach space;
- $\Psi: B \to [0, +\infty]$, with $\Psi(0) = 0$, l.s.c. and **convex**
- ∂ convex analysis subdifferential;
- $\mathcal{E}: [0, T] \times B \rightarrow (-\infty, +\infty]$ is smooth w.r.t. $t \in (0, T)$
- ▶ ∂_u is the "subdifferential" of \mathcal{E} w.r.t. the second variable: $D\mathcal{E}$ if $u \mapsto \mathcal{E}(t, u)$ is smooth,

Doubly nonlinear evolution equations

$\partial \Psi(u'(t)) + \partial \mathcal{E}(t, u(t)) \ni 0 \text{ in } B' \quad t \in (0, T),$ (DNE)

- B is a (separable) Banach space;
- $\Psi: B \rightarrow [0, +\infty]$, with $\Psi(0) = 0$, l.s.c. and convex
- ∂ convex analysis subdifferential;
- ▶ $\mathcal{E} : [0, T] \times B \rightarrow (-\infty, +\infty]$ is smooth w.r.t. $t \in (0, T)$
- ▶ ∂_u is the "subdifferential" of \mathcal{E} w.r.t. the second variable: $D\mathcal{E}$ if $u \mapsto \mathcal{E}(t, u)$ is smooth, $\partial \mathcal{E}$ if $u \mapsto \mathcal{E}(t, u)$ is convex and l.s.c.

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 回 ● の Q @

Doubly nonlinear evolution equations

$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \text{ in } B' \quad t \in (0, T),$ (DNE)

- B is a (separable) Banach space;
- $\Psi: B \to [0, +\infty]$, with $\Psi(0) = 0$, l.s.c. and **convex**
- ∂ convex analysis subdifferential;
- ▶ $\mathcal{E} : [0, T] \times B \rightarrow (-\infty, +\infty]$ is smooth w.r.t. $t \in (0, T)$
- ▶ ∂_u is the "subdifferential" of \mathcal{E} w.r.t. the second variable: $D\mathcal{E}$ if $u \mapsto \mathcal{E}(t, u)$ is smooth, $\partial \mathcal{E}$ if $u \mapsto \mathcal{E}(t, u)$ is convex and l.s.c.

Physical interpretation

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$
 (DNE)

is a generalized balance law in Thermomechanics:

- $\Psi \sim \text{dissipation}$ potential
- $\mathcal{E} \sim$ energy functional ($\mathcal{E}(\cdot, u) \sim$ (power of) external forces)

- • ロ • • @ • • 注 • • 注 • の < (

イロン イ団と イヨン ・

3

Physical interpretation

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$
 (DNE)

is a generalized balance law in Thermomechanics:

- $\Psi \sim$ **dissipation** potential
- $\mathcal{E} \sim$ energy functional ($\mathcal{E}(\cdot, u) \sim$ (power of) external forces)

Two cases:

• Ψ has superlinear growth \leftrightarrow dissipation with viscosity effects

$$\lim_{\|v\|\to+\infty}\frac{\Psi(v)}{\|v\|}=+\infty$$

Riccarda Rossi

Physical interpretation

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$
 (DNE)

is a generalized balance law in Thermomechanics:

- $\Psi \sim$ **dissipation** potential
- $\mathcal{E} \sim$ energy functional ($\mathcal{E}(\cdot, u) \sim$ (power of) external forces)

Two cases:

• Ψ has superlinear growth \leftrightarrow dissipation with viscosity effects

$$\lim_{\|v\|\to+\infty}\frac{\Psi(v)}{\|v\|}=+\infty$$

Ψ has linear growth and is positively 1-homogeneous

$$\Psi(\lambda v) = \lambda \Psi(v) \qquad \forall \, \lambda \ge 0 \, \, \forall \, v \in B$$

↔ rate-independent models

Riccarda Rossi

イロト イポト イヨト イヨト

3

The superlinear case

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$
 (DNE)

 Ψ with superlinear growth

Applications

- elasto-visco-plasticity...
- phase transitions..
- ► ...

Existence results

 \mathcal{E} convex (\mathcal{E} C¹ perturbation of a convex functional), B reflexive:

existence & approximation of solutions: [BARBU '75], [ARAI '79], [SEMBA '86], [COLLI-VISINTIN '90], [COLLI '92]

Riccarda Rossi

・ロト ・伺 ト ・ヨト ・ヨト

3

The superlinear case

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$
 (DNE)

 Ψ with superlinear growth

Applications

- elasto-visco-plasticity...
- phase transitions..
- ...

Existence results

 \mathcal{E} convex (\mathcal{E} C¹ perturbation of a convex functional), *B* reflexive:

- existence & approximation of solutions: [BARBU '75], [ARAI '79], [SEMBA '86], [COLLI-VISINTIN '90], [COLLI '92]
- superlinear growth of Ψ gives control of u'

Riccarda Rossi

The superlinear case

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$
 (DNE)

Ψ with superlinear growth

Applications

- elasto-visco-plasticity...
- phase transitions..
- ...

Existence results

 \mathcal{E} convex (\mathcal{E} C¹ perturbation of a convex functional), *B* reflexive:

- existence & approximation of solutions: [BARBU '75], [ARAI '79], [SEMBA '86], [COLLI-VISINTIN '90], [COLLI '92]
- superlinear growth of Ψ gives control of $u' \Rightarrow$ at least $u \in W^{1,1}(0, T; B)$

Riccarda Rossi

<ロ> (日) (日) (日) (日) (日)

The rate-independent case

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$
 (DNE)

Ψ 1-positively homogeneous

Applications

Suitable choices of Ψ and ${\mathcal E}$ lead to applications in

- 1. quasistatic solid-solid phase transformations (in SMA): [MIELKE-THEIL-LEVITAS '02], [MIELKE-ROUBÍČEK '03]
- quasistatic elastoplasticity: [Dal Maso-De Simone-Mora '06], [Dal Maso-De Simone-Mora-Morini '06], [Mielke et al. '02, '03, '04],...
- quasistatic crack propagation: [MAINIK-MIELKE '04], [DAL MASO-FRANCFORT-TOADER '05] [FRANCFORT-MIELKE '05]...
- 4. damage: [MIELKE-ROUBÍČEK '06]...
- 5. delamination problems: [Kočvara-Mielke-Roubíček '03]
- 6. ferromagnetism, ferroelectricity: [MIELKE-TIMOFTE '05]....

Riccarda Rossi

The simplest ODE example:

$$\begin{cases} B = \mathbb{R}, \quad \Psi(v) = |v| \quad \forall v \in \mathbb{R} \\ \mathcal{E}(t, u) = \frac{1}{2} |u|^2 - \ell(t)u \quad \forall (t, u) \in [0, T] \times \mathbb{R} \end{cases}$$

 $(\ell \in C^1([0, T]) \sim \text{ external loading})$

Riccarda Rossi

The simplest ODE example:

$$\begin{cases} B = \mathbb{R}, \quad \Psi(v) = |v| \quad \forall v \in \mathbb{R} \\ \mathcal{E}(t, u) = \frac{1}{2} |u|^2 - \ell(t)u \quad \forall (t, u) \in [0, T] \times \mathbb{R} \end{cases}$$

 $(\ell \in C^1([0, T]) \sim \text{ external loading})$

$$Sign(u'(t)) + u(t) \ni \ell(t), \quad t \in (0, T)$$
(ES)

Riccarda Rossi

The simplest ODE example:

$$\begin{cases} B = \mathbb{R}, \quad \Psi(v) = |v| \quad \forall v \in \mathbb{R} \\ \mathcal{E}(t, u) = \frac{1}{2} |u|^2 - \ell(t)u \quad \forall (t, u) \in [0, T] \times \mathbb{R} \end{cases}$$

 $(\ell \in C^1([0, T]) \sim \text{ external loading})$

$$\operatorname{Sign}(u'(t)) + u(t) \ni \ell(t), \quad t \in (0, T)$$
(ES)

<ロト < 部ト < きと < きと …</p>

3

Remark:

u is solution of (ES) if and only if *u* ∘ α is solution of (ES) for every strictly increasing reparametrization α

Riccarda Rossi

The simplest ODE example:

$$\begin{cases} B = \mathbb{R}, \quad \Psi(v) = |v| \quad \forall v \in \mathbb{R} \\ \mathcal{E}(t, u) = \frac{1}{2} |u|^2 - \ell(t)u \quad \forall (t, u) \in [0, T] \times \mathbb{R} \end{cases}$$

 $(\ell \in \mathrm{C}^1([0, T]) \sim \text{ external loading})$

$$\operatorname{Sign}(u'(t)) + u(t) \ni \ell(t), \quad t \in (0, T)$$
(ES)

<ロト < 部ト < きと < きと …</p>

2

Remark:

- *u* is solution of (ES) if and only if $u \circ \alpha$ is solution of (ES) for every strictly increasing reparametrization α
- The output u responds to the input ℓ invariantly for time rescalings, possibly with hysteresis effects

Riccarda Rossi

In general, in rate-independent systems:

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T)$$
 (DNE)

is invariant under time rescalings

In general, in rate-independent systems:

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T)$$
 (DNE)

is invariant under time rescalings

We are modelling systems with two time scales:

- a scale intrinsic to the system, fast time scale
- the slow time scale of the external loading $\sim \partial_t \mathcal{E}$ (dominating scale)

In general, in rate-independent systems:

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T)$$
 (DNE)

is invariant under time rescalings

We are modelling systems with two time scales:

- a scale intrinsic to the system, fast time scale
- the slow time scale of the external loading $\sim \partial_t \mathcal{E}$ (dominating scale)

viscous dissipation is negligible!

In general, in rate-independent systems:

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T)$$
 (DNE)

is invariant under time rescalings

We are modelling systems with two time scales:

- a scale intrinsic to the system, fast time scale
- the slow time scale of the external loading $\sim \partial_t \mathcal{E}$ (dominating scale)

viscous dissipation is negligible!

$$Sign(u'(t)) + u(t) \ni \ell(t), \quad t \in (0, T)$$
(ES)

《口》《聞》《臣》《臣》

3

Riccarda Rossi

《曰》 《圖》 《臣》 《臣》

3

Two time scales

In general, in rate-independent systems:

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T)$$
 (DNE)

is invariant under time rescalings

We are modelling systems with two time scales:

- a scale intrinsic to the system, fast time scale
- ▶ the slow time scale of the external loading $\sim \partial_t \mathcal{E}$ (dominating scale)

viscous dissipation is negligible!

$$\varepsilon u'(t) + \mathsf{Sign}(u'(t)) + u(t)
i \ell(t), \quad t \in (0, T) \quad \text{ as } \varepsilon \downarrow 0 \quad (\mathsf{ES}_{\varepsilon})$$

Riccarda Rossi

Results in "good" Banach spaces, for convex energies

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$
 (DNE)

 Ψ 1-positively homogeneous

Existence, approximation results [Mielke-Theil'04, Mielke-R.'07] if:

- B is reflexive
- ▶ $\mathcal{E} \in \mathrm{C}^1([0, T] \times B)$

- ▲ロ > ▲ 圖 > ▲ 圖 > ▲ 圖 > ろんら

Riccarda Rossi

《曰》《卽》《臣》《臣》

э.

Results in "good" Banach spaces, for convex energies

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$
 (DNE)

 Ψ 1-positively homogeneous

Existence, approximation results [Mielke-Theil'04, Mielke-R.'07] if:

- B is reflexive
- ▶ $\mathcal{E} \in \mathrm{C}^1([0, T] \times B)$

Uniqueness, continuous dependence on the initial data [Mielke-Theil'04, Mielke-R.'07] if:

- B is reflexive
- $\mathcal{E} \in \mathrm{C}^1([0, T] \times B)$
- $u \mapsto \mathcal{E}(t, u)$ is uniformly convex

Riccarda Rossi

Non reflexive spaces, non-smooth energies, jumping solutions

In general rate-independent problems:

- *B* may be **non-reflexive** (e.g., L^1 in phase transitions in SMA),
- ▶ *B* need **not have a linear structure** (e.g., in crack propagation)

- ◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへの

Non reflexive spaces, non-smooth energies, jumping solutions

In general rate-independent problems:

- *B* may be **non-reflexive** (e.g., L^1 in phase transitions in SMA),
- ▶ *B* need **not have a linear structure** (e.g., in crack propagation)
- \mathcal{E} may be **non-smooth**
- ▶ \mathcal{E} may be **non-convex** (\Rightarrow NO UNIQUENESS!)

Non reflexive spaces, non-smooth energies, jumping solutions

In general rate-independent problems:

- *B* may be **non-reflexive** (e.g., L^1 in phase transitions in SMA),
- ▶ *B* need **not have a linear structure** (e.g., in crack propagation)
- ► *E* may be **non-smooth**
- E may be non-convex (⇒ NO UNIQUENESS!)
- Ψ has a linear growth at $\infty \rightsquigarrow$

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$

 \rightsquigarrow standard regularity for *u* is $u \in BV(0, T; B)$ (*u* may have jumps!!!)

Riccarda Rossi

イロト イ団ト イヨト イヨト

1

Mielke's Global Energetic formulation

Global Energetic solutions [Mielke-Theil'99,'04], [Mielke-Theil-Levitas'02] $u : [0, T] \rightarrow B$ satisfying global stability condition & energy balance

$$\mathcal{E}(t, u(t)) \leq \mathcal{E}(t, z) + \mathcal{D}(u(t), z) \qquad \forall z \in B ,$$

 $\mathcal{E}(t, u(t)) + \mathrm{Diss}_{\mathcal{D}}(u, [0, t]) = \mathcal{E}(t, u(0)) + \int_{0}^{t} \partial_{t} \mathcal{E}(r, u(r)) \,\mathrm{d}r .$

where

- \mathcal{D} is a dissipation distance defined from Ψ
- $Diss_{\mathcal{D}}$ is a global dissipation functional defined from Ψ

イロト イヨト イヨト イヨト

3

Mielke's Global Energetic formulation

Global Energetic solutions [Mielke-Theil'99,'04], [Mielke-Theil-Levitas'02] $u : [0, T] \rightarrow B$ satisfying global stability condition & energy balance

$$\mathcal{E}(t, u(t)) \leq \mathcal{E}(t, z) + \mathcal{D}(u(t), z) \qquad \forall z \in B,$$

 $\mathcal{E}(t, u(t)) + \mathrm{Diss}_{\mathcal{D}}(u, [0, t]) = \mathcal{E}(t, u(0)) + \int_{0}^{t} \partial_{t} \mathcal{E}(r, u(r)) \,\mathrm{d}r.$

Pro's

- ✓ Completely derivative-free → adaptable to more general ambient spaces (general topological spaces [Mainik-Mielke'05])
- ✓ equivalence with the differential formulation (DNE) if *E* convex

<ロト < 部ト < きと < きと …</p>

2

Mielke's Global Energetic formulation

Global Energetic solutions [Mielke-Theil'99,'04], [Mielke-Theil-Levitas'02] $u : [0, T] \rightarrow B$ satisfying global stability condition & energy balance

$$\mathcal{E}(t, u(t)) \leq \mathcal{E}(t, z) + \mathcal{D}(u(t), z) \qquad \forall z \in B,$$

 $\mathcal{E}(t, u(t)) + \mathrm{Diss}_{\mathcal{D}}(u, [0, t]) = \mathcal{E}(t, u(0)) + \int_{0}^{t} \partial_{t} \mathcal{E}(r, u(r)) \,\mathrm{d}r.$

Pro's

- ✓ Completely derivative-free → adaptable to more general ambient spaces (general topological spaces [Mainik-Mielke'05])
- ✓ equivalence with the differential formulation (DNE) if \mathcal{E} convex

BUT (in the non convex case), global stability forces energetic solutions to jump too early to avoid energy losses

Riccarda Rossi

Bad Vs. Good jumps

The simplest non convex case

$$\begin{cases} B = \mathbb{R}, \quad \Psi(v) = |v| \quad \forall v \in \mathbb{R} \\ \mathcal{E}(t, u) = \mathcal{W}(u) - \ell(t)u \quad \forall (t, u) \in [0, T] \times \mathbb{R} \end{cases}$$

- ► *W* double well potential
- $\ell \in C^1([0, T]) \sim$ external loading

 $\operatorname{Sign}(u'(t)) + \mathcal{W}'(u(t)) \ni \ell(t), \quad t \in (0, T)$

Riccarda Rossi

・ロト ・聞 ト ・ ヨト ・ ヨトー

3

Bad Vs. Good jumps

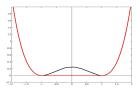
The simplest non convex case

$$\begin{cases} B = \mathbb{R}, & \Psi(v) = |v| \quad \forall v \in \mathbb{R} \\ \mathcal{E}(t, u) = \mathcal{W}(u) - \ell(t)u & \forall (t, u) \in [0, T] \times \mathbb{R} \end{cases}$$

- ► *W* double well potential
- $\ell \in C^1([0, T]) \sim$ external loading

$$\operatorname{Sign}(u'(t)) + \mathcal{W}'(u(t)) \ni \ell(t), \quad t \in (0, T)$$

Convexification \mathcal{W}^{**} of \mathcal{W}



Riccarda Rossi

イロン イ団と イヨン ・

2

Bad Vs. Good jumps

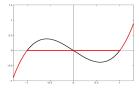
The simplest non convex case

$$\begin{cases} B = \mathbb{R}, & \Psi(v) = |v| \quad \forall v \in \mathbb{R} \\ \mathcal{E}(t, u) = \mathcal{W}(u) - \ell(t)u & \forall (t, u) \in [0, T] \times \mathbb{R} \end{cases}$$

- ► *W* double well potential
- $\ell \in C^1([0, T]) \sim$ external loading

$$\operatorname{Sign}(u'(t)) + \mathcal{W}'(u(t)) \ni \ell(t), \quad t \in (0, T)$$

Global solutions are given by $u(t) = (DW^{**})^{-1} (\ell(t) - 1)$: jumping too early!



Riccarda Rossi

イロト イ理ト イヨト イヨト

2

Bad Vs. Good jumps

The simplest non convex case

$$\begin{cases} B = \mathbb{R}, & \Psi(v) = |v| \quad \forall v \in \mathbb{R} \\ \mathcal{E}(t, u) = \mathcal{W}(u) - \ell(t)u & \forall (t, u) \in [0, T] \times \mathbb{R} \end{cases}$$

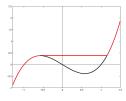
► *W* double well potential

4

• $\ell \in C^1([0, T]) \sim$ external loading

$$\operatorname{Sign}(u'(t)) + \mathcal{W}'(u(t)) \ni \ell(t), \quad t \in (0, T)$$

We aim to model the "right" hysteresis dynamics



Riccarda Rossi

The vanishing viscosity approach

Aims

- model ("natural") jumps (due to $u \in BV(0, T; B)$)
- obtain solutions jumping later (than global energetic solutions)

The vanishing viscosity approach

Aims

- model ("natural") jumps (due to $u \in BV(0, T; B)$)
- obtain solutions jumping later (than global energetic solutions)

Approach

Riccarda Rossi

Consider solutions arising as limits of viscous regularizations for vanishing viscosity: selection criterion for mechanically feasible jumps

|▲口▼▲□▼▲回▼▲回▼ 回 うぐの

The vanishing viscosity approach

Aims

- model ("natural") jumps (due to $u \in BV(0, T; B)$)
- obtain solutions jumping later (than global energetic solutions)

Approach

Consider solutions arising as limits of viscous regularizations for vanishing viscosity: selection criterion for mechanically feasible jumps

Vanishing viscosity in the applications

- quasistatic evolution of fractures: [Toader-Zanini'06], [Cagnetti'07], [Cagnetti-Toader'07], [Knees-Mielke-Zanini'07], leading to local stability-oriented formulations: [Dal Maso-Toader'02], [Negri-Ortner'07], [Garroni-Larsen07] (threshold evolutions in damage)...
- plasticity with softening: [Dal Maso-DeSimone-Mora-Morini'06]

▲日▼▲□▼▲□▼▲□▼ □ ● ● ●

Riccarda Rossi

The vanishing viscosity analysis by Efendiev & Mielke

Problem

In the vanishing viscosity limit:

- local stability
- energy inequality

may not be enough for controlling jumps. $\overset{}{}$ Which further conditions better describe them?

- ▲ ロ ▶ ▲ 母 ▶ ▲ 母 ▶ ▲ 母 ▶ ▲ 母 ▶ ▲ 母 ▶ ▲ 母 ▶ ▲ 母 ▶ ▲ 母 ▶ ▲ 母 ▶ ▲ 母 ▶ ▲

The vanishing viscosity analysis by Efendiev & Mielke

Problem

In the vanishing viscosity limit:

- local stability
- energy inequality

may not be enough for controlling jumps. $\overset{}{_{\scriptstyle 2}}$ Which further conditions better describe them?

The approach by Efendiev-Mielke

- Jumps in the vanishing viscosity limit correspond to viscous transitions between stable states
- To capture the viscous transition path: NOT SHRINK jumps at a point, look at curves with their arc length parametrization
- Asymptotic analysis of (reparametrized) trajectories in an extended phase space

The vanishing viscosity analysis by Efendiev & Mielke

[Efendiev-Mielke, J. Convex Anal.'06]

Setting:

- ► *B* finite dimensional space
- ▶ $\mathcal{E} \in \mathrm{C}^1([0, T] \times B)$
- ▶ $\Psi(u) \sim ||u|| \quad \forall u \in B$

- ▲ ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ うえぐ

The vanishing viscosity analysis by Efendiev & Mielke

[Efendiev-Mielke, J. Convex Anal.'06]

Setting:

- B finite dimensional space
- ▶ $\mathcal{E} \in \mathrm{C}^1([0, T] \times B)$
- ▶ $\Psi(u) \sim ||u|| \quad \forall u \in B$

The **viscous regularization** of Ψ :

$$\Psi_{\boldsymbol{\varepsilon}}(u) := \Psi(u) + \frac{\boldsymbol{\varepsilon}}{2} \|u\|^2 \quad \forall \, \boldsymbol{\varepsilon} > 0.$$

Let $\{u_{\varepsilon}\}_{\varepsilon>0}$ be the family of solutions of the Cauchy problem

$$\begin{cases} \partial \Psi_{\boldsymbol{\varepsilon}}(\boldsymbol{u}_{\boldsymbol{\varepsilon}}'(t)) + \mathrm{D}\mathcal{E}(t,\boldsymbol{u}_{\boldsymbol{\varepsilon}}(t)) \ni 0 \quad t \in (0,T), \\ \boldsymbol{u}_{\boldsymbol{\varepsilon}}(0) = \boldsymbol{u}_{0}. \end{cases}$$

Problem: limit behaviour of $\{u_{\varepsilon}\}$ as $\varepsilon \searrow 0$

Riccarda Rossi

イロン イ団と イヨン ・

1

A rescaling technique

• Arc length parametrization of the graph $\{(t, u_{\varepsilon}(t)) : t \in [0, T]\}$:

$$s_{\boldsymbol{\varepsilon}}(t) := t + \int_0^t \|u_{\boldsymbol{\varepsilon}}'(s)\| \mathrm{d}s$$

 $\{s_{\varepsilon}\}_{\varepsilon}$ is bounded in $L^{\infty}(0, T)$: up to a subseq. $s_{\varepsilon}(T) \to \widehat{T}$.

Introduce the rescaled functions

$$\widehat{t}_{\varepsilon}(s) := s_{\varepsilon}^{-1}(s), \quad \widehat{u}_{\varepsilon}(s) := u_{\varepsilon}(\widehat{t}_{\varepsilon}(s)) \quad \forall s \in [0, s_{\varepsilon}(T)]$$

From the normalization condition

$$\widehat{t}'_{oldsymbol{arepsilon}}(s)+\|\widehat{u}'_{oldsymbol{arepsilon}}(s)\|=1 \quad ext{per q.o.} \ s\in(0,s_{oldsymbol{arepsilon}}(T))$$

 \Rightarrow a priori estimates for $\{\hat{t}_{\epsilon}\}, \{\hat{u}_{\epsilon}\}$

Ascoli-Arzelà + finite dimension

$$\widehat{t}_{\varepsilon} \to \widehat{t}, \ \widehat{u}_{\varepsilon} \to \widehat{u}$$
 uniformly on $[0, \widehat{T}]$

Riccarda Rossi

3

A rescaling technique

The limit problem solved by $(\widehat{t}, \widehat{u})$

$$\left\{ egin{aligned} &\widehat{\Psi}(\widehat{u}'(s)) + \mathrm{D}\mathcal{E}(\widehat{t}(s),\widehat{u}(s)) \ni 0 \quad s \in (0,\,\widehat{T}) \\ &\widehat{u}(0) = u_0, \ \ \widehat{t}(0) = 0, \ \ \widehat{t}(\widehat{T}) = \mathcal{T}, \\ &\widehat{t}'(s) + \|\widehat{u}'(s)\| = 1 \quad s \in (0,\,\widehat{T}) \end{aligned}
ight.$$

where

$$\widehat{\Psi}(u'):=egin{cases} \Psi(u')&\|u'\|\leq 1,\ +\infty&\|u'\|>1 \end{cases}$$

Riccarda Rossi

Vanishing viscosity limit: sliding vs. viscous slips

$$\begin{cases} \partial \widehat{\Psi}(\widehat{u}'(s)) + \mathrm{D}\mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \ni 0, \\ \widehat{u}(0) = u_0, \quad \widehat{t}(0) = 0, \quad \widehat{t}(\widehat{T}) = T, \\ \widehat{t}'(s) + \|\widehat{u}'(s)\| = 1 \end{cases}$$

 $\widehat{\Psi}$ is NOT 1-homogeneous \Rightarrow the problem is NOT rate-independent!

・ロト ・聞 ト ・ヨト ・ヨト

3

Vanishing viscosity limit: sliding vs. viscous slips

$$\begin{cases} \partial \widehat{\Psi}(\widehat{u}'(s)) + \mathrm{D}\mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \ni 0, \\ \widehat{u}(0) = u_0, \quad \widehat{t}(0) = 0, \quad \widehat{t}(\widehat{T}) = T, \\ \widehat{t}'(s) + \|\widehat{u}'(s)\| = 1 \end{cases}$$

 $\widehat{\Psi}$ is NOT 1-homogeneous \Rightarrow the problem is NOT rate-independent! "Sliding vs. viscous slips" Three regimes

$\ \widehat{u}'(s)\ =0 \Leftrightarrow \widehat{t}'(s)=1$	Sticking
$0 < \ \widehat{u}'(s) \ < 1 \Leftrightarrow \widehat{t}'(s) \in (0,1)$	SLIDING
$\ \widehat{u}'(s)\ =1 \Leftrightarrow \widehat{t}'(s)=0$	VISCOUS SLIP

Riccarda Rossi

Vanishing viscosity limit: sliding vs. viscous slips

$$\begin{cases} \partial \widehat{\Psi}(\widehat{u}'(s)) + \mathrm{D}\mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \ni 0, \\ \widehat{u}(0) = u_0, \quad \widehat{t}(0) = 0, \quad \widehat{t}(\widehat{T}) = T, \\ \widehat{t}'(s) + \|\widehat{u}'(s)\| = 1 \end{cases}$$

 $\widehat{\Psi}$ is NOT 1-homogeneous \Rightarrow the problem is NOT rate-independent!

"Sliding vs. viscous slips"

Three regimes

- 1. for $\|\widehat{u}'(s)\| = 0$ the system is stationary
- 2. for $0 < \|\hat{u}'(s)\| < 1$ the system is driven by rate-independent dissipation: reparametrizing \hat{u} leads to a standard rate-independent problem
- 3. $\|\hat{u}'(s)\| = 1$ corresponds to viscous transition between stable states ("instantaneous" w.r.t. the slow time scale, whence $\hat{t}'(s) = 0$); viscous path described by a gradient flow

Towards metric spaces

In rate-independent applications

- \mathcal{E} is non-smooth
- \mathcal{E} is non-convex

- ▲ ロ ▶ ▲ 國 ▶ ▲ 国 ▶ ▲ 国 ● 今 Q @

Towards metric spaces

In rate-independent applications

- \mathcal{E} is non-smooth
- \mathcal{E} is non-convex
- B does not have the Radon-Nikodým property (e.g., L¹ in phase transitions in SMA): absolutely continuous curves in L¹ need not be differentiable a.e.;
- B need not have a linear structure

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 - シッペ

Riccarda Rossi

Our goal:

Extend the Efendiev-Mielke vanishing viscosity analysis to a metric setting

Our goal:

- Extend the Efendiev-Mielke vanishing viscosity analysis to a metric setting
- Obtain a new notion of rate-independent evolution in a metric setting

Our goal:

- Extend the Efendiev-Mielke vanishing viscosity analysis to a metric setting
- Obtain a new notion of rate-independent evolution in a metric setting
- > The metric framework will lead to local, rather than global stability!

Our goal:

- Extend the Efendiev-Mielke vanishing viscosity analysis to a metric setting
- Obtain a new notion of rate-independent evolution in a metric setting
- > The metric framework will lead to local, rather than global stability!

Program

In a metric framework:

1. Approximate rate-independent evolutions with viscous evolutions [Mielke, R., Savaré, quasi-preprint'08]

Our goal:

- Extend the Efendiev-Mielke vanishing viscosity analysis to a metric setting
- Obtain a new notion of rate-independent evolution in a metric setting
- > The metric framework will lead to local, rather than global stability!

Program

In a metric framework:

- 1. Approximate rate-independent evolutions with viscous evolutions [Mielke, R., Savaré, quasi-preprint'08]
- Analysis of doubly nonlinear evolution equations where dissipation with superlinear growth: existence & approximation of solutions [Mielke, R., Savaré, Annali SNS Pisa'08]

Doubly nonlinear evolutions in metric spaces

Analysis of

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad t \in (0, T)$$
 (DNE)

・ロト ・伺 ト ・ヨト ・ヨト

 Ψ with superlinear growth

in the framework of a metric space (X, d).

Relying on: theory of **gradient flows** in metric spaces (i.e. **quadratic** Ψ):

- ▶ De Giorgi, Marino, Saccon, Tosques, Degiovanni, Ambrosio '80 ~ '90 → theory of Curves of Maximal Slope and Minimizing Movements
- ► [Gradient flows in metric spaces, Ambrosio-Gigli-Savaré 2005] ~> systematic theory of existence, approximation & uniqueness of solutions of metric gradient flows, with applications to gradient flows in Wasserstein spaces.

Riccarda Rossi

Problem:

How to formulate

"
$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) = 0, \quad t \in (0, T)$$
"

without a linear/differential structure on X?

<ロト <部ト < 注入 < 注入

3

Towards the metric formulation

Problem:

How to formulate

"
$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) = 0, \quad t \in (0, T)$$
 "

without a linear/differential structure on X?

Heuristics:

If the chain rule holds

$$rac{\mathrm{d}}{\mathrm{d} t}\mathcal{E}(t,u(t))-\partial_t\mathcal{E}(t,u(t))=\langle\partial_u\mathcal{E}(t,u(t)),u'(t)
angle$$

then (DNE) is equivalent to

$$\Psi(u'(t))) + \Psi^*(-\partial_u \mathcal{E}(t, u(t))) + \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(t, u(t)) - \partial_t \mathcal{E}(t, u(t)) = 0 \quad t \in (0, T)$$

(abuse of notation: $\partial_u \mathcal{E}(t, u(t)) \sim \text{ singleton...})$

Riccarda Rossi

In the particular case

$$\Psi(x) := \frac{|x|^p}{p}, \quad 1$$

$$\Psi(u'(t))) + \Psi^*(-\partial_u \mathcal{E}(t, u(t))) + \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(t, u(t)) - \partial_t \mathcal{E}(t, u(t)) = 0 \quad t \in (0, T)$$

- * ロ > * @ > * 注 > * 注 > … 注 … の < @

Riccarda Rossi

In the particular case

$$\Psi(x) := \frac{|x|^p}{p}, \quad 1$$

$$\frac{1}{p}\left|u'(t)\right|^{p}+\frac{1}{q}\left|-\partial_{u}\mathcal{E}(t,u(t))\right|^{q}+\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(t,u(t))-\partial_{t}\mathcal{E}(t,u(t))=0\quad t\in(0,T)$$

- * ロ * * 母 * * 国 * * 国 * * の < や

Riccarda Rossi

In the particular case

$$\Psi(x) := \frac{|x|^p}{p}, \quad 1$$

$$\frac{1}{p}|u'(t)|^p + \frac{1}{q}| - \partial_u \mathcal{E}(t, u(t))|^q + \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(t, u(t)) - \partial_t \mathcal{E}(t, u(t)) = 0 \quad t \in (0, T)$$

New formulation features the modulus of derivatives, rather than derivatives!

- ▲ 日 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ 画 ▶ ◇ @ や

Riccarda Rossi

イロト イポト イヨト イヨト

э

Towards the metric formulation

In the particular case

$$\Psi(x) := \frac{|x|^p}{p}, \quad 1$$

$$\frac{1}{p}\left|u'(t)\right|^{p}+\frac{1}{q}\left|-\partial_{u}\mathcal{E}(t,u(t))\right|^{q}+\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(t,u(t))-\partial_{t}\mathcal{E}(t,u(t))=0\quad t\in(0,T)$$

New formulation features the modulus of derivatives, rather than derivatives!

Adaptable to metric spaces upon introducing suitable "metric surrogates" of "modulus of derivatives".

The metric derivative

• Setting: (X, d) complete metric space

Metric derivative

▶ We say that a curve $u : [0, T] \rightarrow X$ is absolutely continuous if

$$\exists m \in L^1(0,T) : \quad d(u(t),u(s)) \leq \int_s^t m(r) \, \mathrm{d}r \quad \forall 0 \leq s \leq t \leq T.$$

• Given $u \in AC(0, T; X)$, its metric derivative

$$|u'|(t) := \lim_{h \to 0} rac{d(u(t), u(t+h))}{|h|}$$
 for a.e. $t \in (0, T)$

 $\|u'(t)\| \rightsquigarrow |u'|(t)$

Riccarda Rossi

Slope & Chain rule

• Setting: (X, d) complete metric space

Local slope & Chain rule

• Given $\mathcal{E} : [0, T] \times X \to (-\infty, +\infty]$ and $u \in D(\mathcal{E}(t, \cdot))$, the local slope of $\mathcal{E}(t, \cdot)$ at u is

$$\begin{aligned} |\partial \mathcal{E}|(t, u) &:= \limsup_{v \to u} \frac{(\mathcal{E}(t, u) - \mathcal{E}(t, v))^+}{d(u, v)} \\ \| - \partial_u \mathcal{E}(t, u) \| \rightsquigarrow |\partial \mathcal{E}|(t, u) \end{aligned}$$

|▲口▼▲□▼▲回▼▲回▼ 回 うぐの

Riccarda Rossi

Slope & Chain rule

• Setting: (X, d) complete metric space

Local slope & Chain rule

• Given $\mathcal{E} : [0, T] \times X \to (-\infty, +\infty]$ and $u \in D(\mathcal{E}(t, \cdot))$, the local slope of $\mathcal{E}(t, \cdot)$ at u is

$$\begin{aligned} |\partial \mathcal{E}|(t, u) &:= \limsup_{v \to u} \frac{(\mathcal{E}(t, u) - \mathcal{E}(t, v))^+}{d(u, v)} \\ \| - \partial_u \mathcal{E}(t, u) \| \rightsquigarrow |\partial \mathcal{E}|(t, u) \end{aligned}$$

▶ \mathcal{E} complies with the chain rule w.r.t. $|\partial \mathcal{E}|$ if $\forall v \in AC(0, T; D(\mathcal{E}))$ the map $t \mapsto \mathcal{E}(t, v(t))$ is absolutely continuous and

$$\partial_t \mathcal{E}(t,v(t)) - rac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(t,v(t)) \leq |v'|(t) \; |\partial \mathcal{E}|(t,v(t)) \; \; \; ext{per q.o.} \; t \in (0,\mathcal{T}).$$

Riccarda Rossi

The metric formulation

- Basic setting:
 - (X, d) complete metric space
 - ▶ Energy $\rightsquigarrow \mathcal{E} : [0, T] \times X \to (-\infty, +\infty]$ l.s.c., complying with the chain rule w.r.t. $|\partial \mathcal{E}|$
 - ▶ Dissipation $\rightsquigarrow \psi : \mathbb{R}^+ \to \mathbb{R}^+$ l.s.c., convex, $\psi(0) = 0$, with

$$\lim_{x \to +\infty} \frac{\psi(x)}{x} = +\infty$$

Metric formulation

A curve $u \in AC(0, T; X)$ satisfies the **metric formulation** of

- * ロ * * 個 * * 画 * * 画 * - 画 * うへで

The metric formulation

- Basic setting:
 - (X, d) complete metric space
 - ▶ Energy $\rightsquigarrow \mathcal{E} : [0, T] \times X \to (-\infty, +\infty]$ l.s.c., complying with the chain rule w.r.t. $|\partial \mathcal{E}|$
 - ▶ Dissipation $\rightsquigarrow \psi : \mathbb{R}^+ \to \mathbb{R}^+$ l.s.c., convex, $\psi(0) = 0$, with

$$\lim_{x \to +\infty} \frac{\psi(x)}{x} = +\infty$$

Metric formulation

A curve $u \in AC(0, T; X)$ satisfies the **metric formulation** of

"
$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) = 0 \quad t \in (0, T)$$
"

Riccarda Rossi

The metric formulation

- Basic setting:
 - (X, d) complete metric space
 - ▶ Energy $\rightsquigarrow \mathcal{E} : [0, T] \times X \to (-\infty, +\infty]$ l.s.c., complying with the chain rule w.r.t. $|\partial \mathcal{E}|$
 - ▶ Dissipation $\rightsquigarrow \psi : \mathbb{R}^+ \to \mathbb{R}^+$ l.s.c., convex, $\psi(0) = 0$, with

$$\lim_{x \to +\infty} \frac{\psi(x)}{x} = +\infty$$

Metric formulation

A curve $u \in AC(0, T; X)$ satisfies the metric formulation of

$$\Psi(u'(t))) + \Psi^*(-\partial_u \mathcal{E}(t, u(t))) + \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(t, u(t)) - \partial_t \mathcal{E}(t, u(t)) = 0 \quad t \in (0, T)$$

Riccarda Rossi

The metric formulation

- Basic setting:
 - (X, d) complete metric space
 - ▶ Energy $\rightsquigarrow \mathcal{E} : [0, T] \times X \to (-\infty, +\infty]$ l.s.c., complying with the chain rule w.r.t. $|\partial \mathcal{E}|$
 - ▶ Dissipation $\rightsquigarrow \psi : \mathbb{R}^+ \to \mathbb{R}^+$ l.s.c., convex, $\psi(0) = 0$, with

$$\lim_{x \to +\infty} \frac{\psi(x)}{x} = +\infty$$

Metric formulation

A curve $u \in AC(0, T; X)$ satisfies the **metric formulation** of

$$\begin{split} \Psi(u'(t))) + \Psi^*(-\partial_u \mathcal{E}(t,u(t))) + \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(t,u(t)) - \partial_t \mathcal{E}(t,u(t)) = 0 \quad t \in (0,T) \\ \text{f for a.e. } t \in (0,T) \end{split}$$

$$\psi(|u'|(t)) + \psi^*(|\partial \mathcal{E}|(t, u(t))) + \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(t, u(t)) - \partial_t \mathcal{E}(t, u(t)) = 0$$

Riccarda Rossi

イロト イヨト イヨト イヨト

1

An existence result

Theorem [Mielke, R., Savaré, Annali SNS Pisa'08]

▶
$$\psi : \mathbb{R}^+ \to \mathbb{R}^+$$
 convex, l.s.c., $\psi(0) = 0$, superlinear growth

▶
$$\mathcal{E} : [0, T] \times X \rightarrow (-\infty, +\infty]$$
 smooth w.r.t. $t \in [0, T]$

- ▶ \mathcal{E} l.s.c. and coercive w.r.t. $u \in X$, chain rule w.r.t. $|\partial \mathcal{E}|$
- $u \mapsto |\partial \mathcal{E}|(t, u)$ is l.s.c. (along bounded energy sequences)

Then, for all $u_0 \in D(\mathcal{E})$ there exists a curve $u \in AC(0, T; X)$ such that $u(0) = u_0$ and

$$\psi(|u'|(t)) + \psi^*(|\partial \mathcal{E}|(t, u(t))) = \partial_t \mathcal{E}(t, u(t)) - \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(t, u(t))$$

for a.e. $t \in (0, T)$.

Riccarda Rossi

イロト イヨト イヨト イヨト

3

An existence result

Theorem [Mielke, R., Savaré, Annali SNS Pisa'08]

▶
$$\psi : \mathbb{R}^+ \to \mathbb{R}^+$$
 convex, l.s.c., $\psi(0) = 0$, superlinear growth

▶
$$\mathcal{E} : [0, T] \times X \rightarrow (-\infty, +\infty]$$
 smooth w.r.t. $t \in [0, T]$

- ▶ \mathcal{E} l.s.c. and coercive w.r.t. $u \in X$, chain rule w.r.t. $|\partial \mathcal{E}|$
- $u \mapsto |\partial \mathcal{E}|(t, u)$ is l.s.c. (along bounded energy sequences)

Then, for all $u_0 \in D(\mathcal{E})$ there exists a curve $u \in AC(0, T; X)$ such that $u(0) = u_0$ and

$$\psi(|u'|(t)) + \psi^*(|\partial \mathcal{E}|(t, u(t))) = \partial_t \mathcal{E}(t, u(t)) - \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(t, u(t))$$

for a.e. $t \in (0, T)$.

Applications: existence results for doubly nonlinear evolution equations in (possibly non reflexive) spaces

Riccarda Rossi

Approximation of rate-independent problems with viscous evolutions

Second step

In the metric space (X, d), approximate

$$\partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t)) \ni 0 \quad \text{in } B' \quad t \in (0, T),$$
 (DNE)

 Ψ 1-positively homogeneous

with the viscous evolution

 $arepsilon u'(t) + \partial \Psi(u'(t)) + \partial_u \mathcal{E}(t, u(t))
i 0 \quad t \in (0, T), \qquad \text{as } arepsilon \searrow \mathbf{0}$

|▲□▶▲□▶▲□▶▲□▶ □ の()

Riccarda Rossi

Approximation of rate-independent problems with viscous evolutions

In the metric setting

- ▶ (X, d) metric space
- ▶ $\mathcal{E} : [0, T] \times X \to \mathbb{R} \cup \{+\infty\}$: assumptions for \exists + Chain rule
- ▶ $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ convex 1-positively homogeneous $(\psi(r) = r \ \forall r \in \mathbb{R}^+)$
- ▶ Viscous regularization of ψ : $\psi_{\varepsilon}(x) := x + \frac{\varepsilon}{2}x^2 \forall x \ge 0 \forall \varepsilon > 0$.
- $\{u_{\varepsilon}\}_{\varepsilon>0} \subset AC(0, T; X)$: metric solutions of

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(t, u_{\varepsilon}(t)) - \partial_t \mathcal{E}(t, u_{\varepsilon}(t)) = \\ & -\psi_{\varepsilon}(|u_{\varepsilon}'|(t)) - \psi_{\varepsilon}^*(|\partial \mathcal{E}|(t, u_{\varepsilon}(t))) \text{ per q.o. } t \in (0, T) \\ & u_{\varepsilon}(0) = u_0. \end{cases}$$

• **Problem:**
$$i$$
 limit of $\{u_{\varepsilon}\}$ as $\varepsilon \searrow 0$?

Riccarda Rossi

Vanishing viscosity revisited

Extend the Mielke-Efendiev technique to the metric setting:

♣ reparametrize by the arc length of $\{(t, u_{\varepsilon}(t)) : t \in [0, T]\}$:

$$\begin{cases} s_{\varepsilon}(t) := t + \int_{0}^{t} |u_{\varepsilon}'|(r) \, \mathrm{d}r \\ \widehat{t}_{\varepsilon}(s) := s_{\varepsilon}^{-1}(s), \quad \widehat{u}_{\varepsilon}(s) := u_{\varepsilon}(\widehat{t}_{\varepsilon}(s)) \quad s \in [0, s_{\varepsilon}(T)] \end{cases}$$

- * ロ > * @ > * 注 > * 注 > ・ 注 ・ の < @

・ロト ・聞 ト ・ ヨト ・ ヨトー

3

Vanishing viscosity revisited

Extend the Mielke-Efendiev technique to the metric setting:

♣ reparametrize by the arc length of $\{(t, u_{\varepsilon}(t)) : t \in [0, T]\}$:

$$\begin{cases} s_{\varepsilon}(t) := t + \int_{0}^{t} |u_{\varepsilon}'|(r) \, \mathrm{d}r \\ \widehat{t}_{\varepsilon}(s) := s_{\varepsilon}^{-1}(s), \quad \widehat{u}_{\varepsilon}(s) := u_{\varepsilon}(\widehat{t}_{\varepsilon}(s)) \quad s \in [0, s_{\varepsilon}(T)] \end{cases}$$

you pass from

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(t, u_{\varepsilon}(t)) - \partial_{t} \mathcal{E}(t, u_{\varepsilon}(t)) = \\ & -\psi_{\varepsilon}(|u_{\varepsilon}'|(t)) - \psi_{\varepsilon}^{*}(|\partial \mathcal{E}|(t, u_{\varepsilon}(t))) & t \in (0, T) \\ & u_{\varepsilon}(0) = u_{0}. \end{cases}$$

Riccarda Rossi

イロト イ理ト イヨト イヨト

3

Vanishing viscosity revisited

Extend the Mielke-Efendiev technique to the metric setting:

♣ reparametrize by the arc length of $\{(t, u_{\varepsilon}(t)) : t \in [0, T]\}$:

$$\begin{cases} s_{\varepsilon}(t) := t + \int_{0}^{t} |u_{\varepsilon}'|(r) \, \mathrm{d}r \\ \widehat{t_{\varepsilon}}(s) := s_{\varepsilon}^{-1}(s), \quad \widehat{u_{\varepsilon}}(s) := u_{\varepsilon}(\widehat{t_{\varepsilon}}(s)) \quad s \in [0, s_{\varepsilon}(T)] \end{cases}$$

$$\begin{cases} \widehat{t}_{\mathcal{E}}(0) = 0 & \widehat{t}_{\mathcal{E}}(s_{\mathcal{E}}(T)) = T \\ \widehat{t}_{\mathcal{E}}'(s) + |\widehat{u}_{\mathcal{E}}'|(s) = 1 & \text{per q.o. } s \in (0, s_{\mathcal{E}}(T)) \\ \text{rescaled metric formulation of (DNE) } (\psi_{\mathcal{E}}, \mathcal{E}) \end{cases}$$

Problem: \underline{i} asymptotic analysis of $\{(\hat{t}_{\varepsilon}, \hat{u}_{\varepsilon})\}$ as $\varepsilon \searrow 0$?

Riccarda Rossi

イロト イポト イヨト イヨト

э

The asymptotic analysis result

Let

$$\widehat{\psi}(r) := \begin{cases} r & r \in [0,1], \\ +\infty & r > 1, \end{cases} \qquad \widehat{T} := \lim_{\varepsilon \downarrow 0} s_{\varepsilon}(T)$$

Theorem [Mielke, R., Savaré]

Assumptions: like for \exists of metric solution (in particular, chain rule).

Then, up to a subsequence, $\{(\hat{t}_{\varepsilon}, \hat{u}_{\varepsilon})\}$ converges as $\varepsilon \searrow 0$ to $(\hat{t}, \hat{u}) \in C^0_{Lip}([0, \hat{T}]; [0, T] \times X)$, which satisfies

$$\begin{cases} \widehat{t}(0) = 0 & \widehat{t}(\widehat{T}) = T \\ \widehat{t}'(s) + |\widehat{u}'|(s) = 1 & \text{per q.o. } s \in (0, \widehat{T}) \end{cases}$$

and the "rescaled metric formulation"

$$egin{aligned} &rac{\mathrm{d}}{\mathrm{d}s}\mathcal{E}(\widehat{t}(s),\widehat{u}(s)) - \partial_t\mathcal{E}(\widehat{t}(s),\widehat{u}(s))\,\widehat{t}'(s) \ &= -\widehat{\psi}(|\widehat{u}'|(s)) - \widehat{\psi}^*\left(|\partial\mathcal{E}|\left(\widehat{t}(s),\widehat{u}(s)
ight)
ight) \ \ s\in(0,\widehat{T})\,. \end{aligned}$$

Riccarda Rossi

$$\begin{aligned} (\widehat{t}, \widehat{u}) \in C^{0}_{\text{Lip}}([0, \widehat{T}]; [0, T] \times X) & \widehat{t}(0) = 0 & \widehat{t}(\widehat{T}) = T \\ \widehat{t}'(s) + \widehat{u}'(s) = 1 & \text{per q.o. } s \in (0, \widehat{T}) \\ \frac{\mathrm{d}}{\mathrm{d}s} \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) - \partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) = -\widehat{\psi}(|\widehat{u}'|(s)) - \widehat{\psi}^* \left(|\partial \mathcal{E}| \left(\widehat{t}(s), \widehat{u}(s) \right) \right) \\ & \text{per q.o. } s \in (0, \widehat{T}) \end{aligned}$$

Riccarda Rossi

$$\begin{aligned} (\widehat{t}, \widehat{u}) \in C^{0}_{\mathrm{Lip}}([0, \widehat{T}]; [0, T] \times X) & \widehat{t}(0) = 0 \quad \widehat{t}(\widehat{T}) = T \\ \widehat{t}'(s) + \widehat{u}'(s) = 1 \quad \mathrm{per} \ \mathrm{q.o.} \ s \in (0, \widehat{T}) \end{aligned} \\ \begin{cases} \mathsf{En.} \ \mathsf{id.:} & \frac{\mathrm{d}}{\mathrm{ds}} \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) - \partial_{t} \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) = -|\widehat{u}'|(s)| \partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \end{aligned} \\ \begin{cases} \mathsf{Constraint:} & |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \in \partial \widehat{\psi}(|\widehat{u}'|(s))| \mathsf{per} \ \mathsf{q.o.} \ s \in (0, \widehat{T}) \end{cases} \end{aligned}$$

- * 中 * 4 周 * * 画 * * 画 * * 回 * * の < @

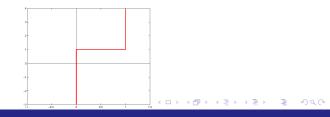
$$\begin{split} (\widehat{t}, \widehat{u}) \in \mathrm{C}^{0}_{\mathrm{Lip}}([0, \widehat{T}]; [0, T] \times X) & \widehat{t}(0) = 0 & \widehat{t}(\widehat{T}) = T \\ & \widehat{t}'(s) + \widehat{u}'(s) = 1 \quad \text{per q.o. } s \in (0, \widehat{T}) \end{split}$$
En. id.:
$$\frac{\mathrm{d}}{\mathrm{ds}} \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) - \partial_{t} \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) = -|\widehat{u}'|(s)| \partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \end{split}$$
Constraint:
$$|\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \in \partial \widehat{\psi}(|\widehat{u}'|(s)) \text{ per q.o. } s \in (0, \widehat{T})$$

 $|\partial \mathcal{E}|(\widehat{t}(s),\widehat{u}(s)) \in \partial \widehat{\psi}(|\widehat{u}'|(s)) \text{ per q.o. } s \in (0,\widehat{T})$

Riccarda Rossi

$$\begin{aligned} (\widehat{t}, \widehat{u}) &\in \mathrm{C}^{0}_{\mathrm{Lip}}([0, \widehat{T}]; [0, T] \times X) & \widehat{t}(0) = 0 & \widehat{t}(\widehat{T}) = T \\ \widehat{t}'(s) + \widehat{u}'(s) = 1 & \text{per q.o. } s \in (0, \widehat{T}) \end{aligned}$$
En. id.:
$$\frac{\mathrm{d}}{\mathrm{ds}} \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) - \partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) = -|\widehat{u}'|(s)| \partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \end{aligned}$$
Three regimes:
$$\begin{cases} |\widehat{u}'|(s) = 1 (\Leftrightarrow \widehat{t}'(s) = 0) & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \geq 1 \\ |\widehat{u}'|(s) \in (0, 1) (\Leftrightarrow \widehat{t}'(s) \in (0, 1)) & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) = 1 \\ |\widehat{u}'|(s) = 0 (\Leftrightarrow \widehat{t}'(s) = 1) & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \leq 1 \end{aligned}$$
Here,
$$\begin{aligned} |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \leq 0 \end{aligned}$$

 $|\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \in \partial \widehat{\psi}(|\widehat{u}'|(s)) \text{ per q.o. } s \in (0, \widehat{T})$



Riccarda Rossi

・ロト ・聞 ト ・ ヨト ・ ヨトー

3

Towards Parametrized Rate-Independent Flows

These are the properties to retain:

$$\begin{aligned} (\widehat{t}, \widehat{u}) \in \operatorname{AC}(0, \widehat{T}; [0, T] \times X) & \widehat{t}(0) = 0 & \widehat{t}(\widehat{T}) = T \\ \widehat{t}'(s) + \widehat{u}'(s) > 0 & \text{per q.o. } s \in (0, \widehat{T}) \end{aligned}$$
En. id.:
$$\frac{\mathrm{d}}{\mathrm{d}s} \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) - \partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) = -|\widehat{u}'|(s)| \partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \end{aligned}$$
Three regimes:
$$\begin{cases} \widehat{t}'(s) = 0 & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \ge 1 \\ \widehat{t}'(s) |\widehat{u}'|(s) > 0 & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) = 1 \\ |\widehat{u}'|(s) = 0 & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \le 1 \end{cases}$$

Riccarda Rossi

Parametrized Rate-Independent Flows

Definition

A pair $(\hat{t}, \hat{u}) \in AC(0, \hat{T}; [0, T] \times X)$ is a parametrized rate-independent flow if

- 1. \hat{t} is non-decreasing, with $\hat{t}(0) = 0$ and $\hat{t}(\hat{T}) = T$
- 2. there holds

$$\widehat{t}'(s) + \widehat{u}'(s) > 0 \quad ext{per q.o. } s \in (0, \widehat{T})$$

3. the map $s \in [0, \widehat{T}] \mapsto \mathcal{E}(\widehat{t}(s), \widehat{u}(s))$ is absolutely continuous and

En. id.:
$$\frac{\mathrm{d}}{\mathrm{d}s} \mathcal{E}(\hat{t}(s), \hat{u}(s)) - \partial_t \mathcal{E}(\hat{t}(s), \hat{u}(s)) \hat{t}'(s) = -|\hat{u}'|(s)|\partial \mathcal{E}|(\hat{t}(s), \hat{u}(s))$$
$$(\hat{t}'(s) = 0 \implies |\partial \mathcal{E}|(\hat{t}(s), \hat{u}(s)) \ge 1$$

Three regimes

s:
$$\begin{cases} \hat{t}'(s) = 0 & \Rightarrow |\partial \mathcal{E}| \left(\hat{t}(s), \hat{u}(s) \right) \ge 1 \\ \hat{t}'(s) |\hat{u}'|(s) > 0 & \Rightarrow |\partial \mathcal{E}| \left(\hat{t}(s), \hat{u}(s) \right) = 1 \\ |\hat{u}'|(s) = 0 & \Rightarrow |\partial \mathcal{E}| \left(\hat{t}(s), \hat{u}(s) \right) \le 1 \end{cases}$$

イロト イポト イヨト イヨト

3

Riccarda Rossi

《曰》 《圖》 《臣》 《臣》

3

Parametrized Rate-Independent Flows: rate-invariance

Parametrized Rate-Independent Flow

$$\begin{array}{lll} \text{En. id.:} & \frac{\mathrm{d}}{\mathrm{d}s}\mathcal{E}(\widehat{t}(s),\widehat{u}(s)) - \partial_t \mathcal{E}(\widehat{t}(s),\widehat{u}(s)) \,\widehat{t}'(s) = -|\widehat{u}'|(s)| \,\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) \\ & \\ \text{Three regimes:} & \begin{cases} \widehat{t}'(s) = 0 & \Rightarrow |\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) \geq 1 \\ \widehat{t}'(s)|\widehat{u}'|(s) > 0 & \Rightarrow |\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) = 1 \\ |\widehat{u}'|(s) = 0 & \Rightarrow |\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) \leq 1 \end{cases} \end{aligned}$$

Main features

Approximable (via vanishing viscosity) solutions are PRIFs.

Riccarda Rossi

イロト イポト イヨト イヨト

Parametrized Rate-Independent Flows: rate-invariance

Parametrized Rate-Independent Flow

$$\begin{array}{lll} \text{En. id.:} & \frac{\mathrm{d}}{\mathrm{d}s}\mathcal{E}(\widehat{t}(s),\widehat{u}(s)) - \partial_t \mathcal{E}(\widehat{t}(s),\widehat{u}(s)) \,\widehat{t}'(s) = -|\widehat{u}'|(s)| \,\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) \\ & \\ \text{Three regimes:} & \begin{cases} \widehat{t}'(s) = 0 & \Rightarrow |\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) \geq 1 \\ \widehat{t}'(s)|\widehat{u}'|(s) > 0 & \Rightarrow |\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) = 1 \\ |\widehat{u}'|(s) = 0 & \Rightarrow |\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) \leq 1 \end{cases} \end{aligned}$$

Main features

- Approximable (via vanishing viscosity) solutions are PRIFs.
- ► The class of PRIF is invariant for (strictly increasing) reparametrizations ⇒ PRIF is a truly rate-independent notion.

Riccarda Rossi

イロト イ理ト イヨト イヨト

3

Parametrized Rate-Independent Flows: flow regimes

Parametrized Rate-Independent Flows

$$\begin{array}{ll} \text{En. id.:} & \frac{\mathrm{d}}{\mathrm{d}s}\mathcal{E}(\widehat{t}(s),\widehat{u}(s)) - \partial_t \mathcal{E}(\widehat{t}(s),\widehat{u}(s)) \,\widehat{t}'(s) = -|\widehat{u}'|(s)| \,\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) \\ & \\ \text{Three regimes:} & \begin{cases} |\widehat{u}'|(s) = 0 & \Rightarrow |\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) \leq 1 \\ \widehat{t}'(s)\,|\widehat{u}'|(s) > 0 & \Rightarrow |\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) = 1 \\ \widehat{t}'(s) = 0 & \Rightarrow |\partial \mathcal{E}|\,(\widehat{t}(s),\widehat{u}(s)) \geq 1 \end{cases} \end{aligned}$$

Mechanical interpretation

• sticking $\leftrightarrow |\widehat{u}'|(s) = 0$

Riccarda Rossi

イロン イ団と イヨン ・

э.

Parametrized Rate-Independent Flows: flow regimes

Parametrized Rate-Independent Flows

$$\begin{array}{ll} \text{En. id.:} & \frac{\mathrm{d}}{\mathrm{d}s}\mathcal{E}(\widehat{t}(s),\widehat{u}(s)) - \partial_t \mathcal{E}(\widehat{t}(s),\widehat{u}(s))\widehat{t}'(s) = -|\widehat{u}'|(s)|\partial \mathcal{E}|\left(\widehat{t}(s),\widehat{u}(s)\right) \\ & \\ \text{Three regimes:} & \begin{cases} |\widehat{u}'|(s) = 0 & \Rightarrow |\partial \mathcal{E}|\left(\widehat{t}(s),\widehat{u}(s)\right) \leq 1 \\ \widehat{t}'(s)|\widehat{u}'|(s) > 0 & \Rightarrow |\partial \mathcal{E}|\left(\widehat{t}(s),\widehat{u}(s)\right) = 1 \\ \widehat{t}'(s) = 0 & \Rightarrow |\partial \mathcal{E}|\left(\widehat{t}(s),\widehat{u}(s)\right) \geq 1 \end{cases} \end{aligned}$$

Mechanical interpretation

- sticking $\leftrightarrow |\widehat{u}'|(s) = 0$
- sliding $\leftrightarrow \hat{t}'(s)|\hat{u}'|(s) > 0$

Riccarda Rossi

イロン イ団と イヨン ・

3

Parametrized Rate-Independent Flows: flow regimes

Parametrized Rate-Independent Flows

$$\begin{array}{ll} \text{En. id.:} & \frac{\mathrm{d}}{\mathrm{d}s}\mathcal{E}(\widehat{t}(s),\widehat{u}(s)) - \partial_t \mathcal{E}(\widehat{t}(s),\widehat{u}(s))\widehat{t}'(s) = -|\widehat{u}'|(s)|\partial \mathcal{E}|\left(\widehat{t}(s),\widehat{u}(s)\right) \\ & \\ \text{Three regimes:} & \begin{cases} |\widehat{u}'|(s) = 0 & \Rightarrow |\partial \mathcal{E}|\left(\widehat{t}(s),\widehat{u}(s)\right) \leq 1 \\ \widehat{t}'(s)|\widehat{u}'|(s) > 0 & \Rightarrow |\partial \mathcal{E}|\left(\widehat{t}(s),\widehat{u}(s)\right) = 1 \\ \widehat{t}'(s) = 0 & \Rightarrow |\partial \mathcal{E}|\left(\widehat{t}(s),\widehat{u}(s)\right) \geq 1 \end{cases} \end{aligned}$$

Mechanical interpretation

- sticking $\leftrightarrow |\hat{u}'|(s) = 0$
- sliding $\leftrightarrow \hat{t}'(s)|\hat{u}'|(s) > 0$

• viscous slip
$$\leftrightarrow \hat{t}'(s) = 0.$$

Riccarda Rossi

3

Flow regimes

Parametrized Rate-Independent Flows

$$\begin{split} \widehat{t}'(s) &\geq 0, \qquad \widehat{t}'(s) + \widehat{u}'(s) > 0 \quad \text{per q.o. } s \in (0, \widehat{T}) \\ \text{En. id: } \mathcal{E}(\widehat{t}(s_2), \widehat{u}(s_2)) - \mathcal{E}(\widehat{t}(s_1), \widehat{u}(s_1)) &= \int_{s_1}^{s_2} \left(\partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) \right. \\ &- \left| \widehat{u}' \right|(s) \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) \right) \, \mathrm{d}s \quad \forall 0 \leq s_1 \leq s_2 \leq \widehat{T} \\ \text{Differential conditions: } \begin{cases} \left| \widehat{u}' \right|(s) = 0 & \Rightarrow \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) \leq 1 \\ \widehat{t}'(s) \left| \widehat{u}' \right|(s) > 0 & \Rightarrow \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) = 1 \\ \widehat{t}'(s) = 0 & \Rightarrow \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) \geq 1 \end{cases} \end{split}$$

Sticking:

$$\blacktriangleright \ |\widehat{u}'|(s_0) = 0 \ \Rightarrow \ \widehat{t}'(s_0) > 0 \ \text{and} \ |\partial \mathcal{E}| \left(\widehat{t}(s_0), \widehat{u}(s_0)\right) \leq 1 \ \text{(local stability)}$$

Riccarda Rossi

3

《曰》《卽》《臣》《臣》

Flow regimes

Parametrized Rate-Independent Flows

$$\begin{split} \widehat{t}'(s) &\geq 0 \,, \qquad \widehat{t}'(s) + \widehat{u}'(s) > 0 \quad \text{per q.o. } s \in (0, \, \widehat{T}) \\ \text{En. id:} \quad \mathcal{E}(\widehat{t}(s_2), \, \widehat{u}(s_2)) - \mathcal{E}(\widehat{t}(s_1), \, \widehat{u}(s_1)) = \int_{s_1}^{s_2} \left(\partial_t \mathcal{E}(\widehat{t}(s), \, \widehat{u}(s)) \, \widehat{t}'(s) \right) \\ \quad - |\widehat{u}'|(s) \ |\partial \mathcal{E}|(\widehat{t}(s), \, \widehat{u}(s)) \right) \, \mathrm{d}s \quad \forall \, 0 \leq s_1 \leq s_2 \leq \widehat{T} \\ \text{Differential conditions:} \quad \begin{cases} |\widehat{u}'|(s) = 0 \qquad \Rightarrow \ |\partial \mathcal{E}|(\widehat{t}(s), \, \widehat{u}(s)) \leq 1 \\ \widehat{t}'(s) |\widehat{u}'|(s) > 0 \qquad \Rightarrow \ |\partial \mathcal{E}|(\widehat{t}(s), \, \widehat{u}(s)) = 1 \\ \widehat{t}'(s) = 0 \qquad \Rightarrow \ |\partial \mathcal{E}|(\widehat{t}(s), \, \widehat{u}(s)) \geq 1 \end{cases} \end{split}$$

Sticking:

- $\blacktriangleright \ |\widehat{u}'|(s_0) = 0 \ \Rightarrow \ \widehat{t}'(s_0) > 0 \ \text{and} \ |\partial \mathcal{E}| \left(\widehat{t}(s_0), \widehat{u}(s_0)\right) \leq 1 \ (\text{local stability})$
- ▶ in a neighb. $I(s_0)$ we have $\hat{u}(s) \equiv \hat{u}(s_0)$ and the energy identity

$$\mathcal{E}(\widehat{t}(s_2), \widehat{u}(s_0)) - \mathcal{E}(\widehat{t}(s_1), \widehat{u}(s_0)) = \int_{s_1}^{s_2} \partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s_0)) \, \widehat{t}'(s) \, \mathrm{d}s \ \forall \, s_1 \leq s_2 \in I(s_0) \, .$$

Riccarda Rossi

3

Flow regimes

Parametrized Rate-Independent Flows

$$\begin{split} \widehat{t}'(s) &\geq 0, \qquad \widehat{t}'(s) + \widehat{u}'(s) > 0 \quad \text{per q.o. } s \in (0, \widehat{T}) \\ \text{En. id: } \mathcal{E}(\widehat{t}(s_2), \widehat{u}(s_2)) - \mathcal{E}(\widehat{t}(s_1), \widehat{u}(s_1)) &= \int_{s_1}^{s_2} \left(\partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) \right. \\ &- \left| \widehat{u}' \right|(s) \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) \right) \, \mathrm{d}s \quad \forall 0 \leq s_1 \leq s_2 \leq \widehat{T} \\ \text{Differential conditions: } \begin{cases} \left| \widehat{u}' \right|(s) = 0 & \Rightarrow \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) \leq 1 \\ \widehat{t}'(s) \left| \widehat{u}' \right|(s) > 0 & \Rightarrow \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) = 1 \\ \widehat{t}'(s) = 0 & \Rightarrow \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) \geq 1 \end{cases} \end{split}$$

Sliding:

$$\blacktriangleright \ \widehat{t}'(s_0) > 0 \ \& \ |\widehat{u}'|(s_0) > 0 \ \Rightarrow \ |\partial \mathcal{E}| \left(\widehat{t}(s_0), \widehat{u}(s_0) \right) = 1 \ \text{(local stability)}$$

Riccarda Rossi

イロト イ理ト イヨト イヨト

3

Flow regimes

Parametrized Rate-Independent Flows

$$\begin{split} \widehat{t}'(s) &\geq 0\,, \qquad \widehat{t}'(s) + \widehat{u}'(s) > 0 \quad \text{per q.o. } s \in (0, \widehat{T}) \\ \text{En. id: } \mathcal{E}(\widehat{t}(s_2), \widehat{u}(s_2)) - \mathcal{E}(\widehat{t}(s_1), \widehat{u}(s_1)) = \int_{s_1}^{s_2} \left(\partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) \right. \\ \left. - \left| \widehat{u}' \right|(s) \left| \partial \mathcal{E} \right| \left(\widehat{t}(s), \widehat{u}(s)\right) \right) \, \mathrm{d}s \quad \forall \, 0 \leq s_1 \leq s_2 \leq \widehat{T} \\ \text{Differential conditions: } \begin{cases} \left| \widehat{u}' \right|(s) = 0 & \Rightarrow \left| \partial \mathcal{E} \right| \left(\widehat{t}(s), \widehat{u}(s)\right) \leq 1 \\ \widehat{t}'(s) \left| \widehat{u}' \right|(s) > 0 & \Rightarrow \left| \partial \mathcal{E} \right| \left(\widehat{t}(s), \widehat{u}(s)\right) = 1 \\ \widehat{t}'(s) = 0 & \Rightarrow \left| \partial \mathcal{E} \right| \left(\widehat{t}(s), \widehat{u}(s)\right) \geq 1 \end{cases} \end{split}$$

Sliding:

- $\blacktriangleright \ \widehat{t}'(s_0) > 0 \ \& \ |\widehat{u}'|(s_0) > 0 \ \Rightarrow \ |\partial \mathcal{E}|\left(\widehat{t}(s_0), \widehat{u}(s_0)\right) = 1 \ \text{(local stability)}$
- ▶ in a neighb. $I(s_0)$ the energy identity reads $\forall s_1 \leq s_2 \in I(s_0)$

$$\mathcal{E}(\widehat{t}(s_2), \widehat{u}(s_2)) - \mathcal{E}(\widehat{t}(s_1), \widehat{u}(s_1)) = \int_{s_1}^{s_2} \left(\partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \, \widehat{t}'(s) - |\widehat{u}'|(s) \right) \mathrm{d}s$$

Riccarda Rossi

<ロト <部ト < 注入 < 注入

3

Flow regimes

Parametrized Rate-Independent Flows

$$\begin{split} \widehat{t}'(s) &\geq 0 \,, \qquad \widehat{t}'(s) + \widehat{u}'(s) > 0 \quad \text{per q.o. } s \in (0, \widehat{T}) \\ \text{En. id: } \mathcal{E}(\widehat{t}(s_2), \widehat{u}(s_2)) - \mathcal{E}(\widehat{t}(s_1), \widehat{u}(s_1)) = \int_{s_1}^{s_2} \left(\partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) \right. \\ \left. - |\widehat{u}'|(s)| \partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \right) \, \mathrm{d}s \quad \forall \, 0 \leq s_1 \leq s_2 \leq \widehat{T} \\ \text{Differential conditions: } \begin{cases} |\widehat{u}'|(s) = 0 & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \leq 1 \\ \widehat{t}'(s) |\widehat{u}'|(s) > 0 & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) = 1 \\ \widehat{t}'(s) = 0 & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) = 1 \end{cases} \end{split}$$

Viscous slip at jumps:

$$\blacktriangleright \ \widehat{t}'(s_0) = 0 \ \Rightarrow \ |\widehat{u}'|(s_0) > 0 \ \Rightarrow \ |\partial \mathcal{E}|\left(\widehat{t}(s_0), \widehat{u}(s_0)\right) \ge 1$$

Riccarda Rossi

<ロト < 部ト < きと < きと …</p>

э.

Flow regimes

Parametrized Rate-Independent Flows

$$\begin{split} \widehat{t}'(s) &\geq 0 \,, \qquad \widehat{t}'(s) + \widehat{u}'(s) > 0 \quad \text{per q.o. } s \in (0, \widehat{T}) \\ \text{En. id: } \mathcal{E}(\widehat{t}(s_2), \widehat{u}(s_2)) - \mathcal{E}(\widehat{t}(s_1), \widehat{u}(s_1)) = \int_{s_1}^{s_2} \left(\partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) \right. \\ \left. - \left| \widehat{u}' \right|(s) \right| \partial \mathcal{E}|\left(\widehat{t}(s), \widehat{u}(s)\right) \right) \mathrm{d}s \quad \forall \, 0 \leq s_1 \leq s_2 \leq \widehat{T} \\ \text{Differential conditions: } \begin{cases} \left| \widehat{u}' \right|(s) = 0 & \Rightarrow \ |\partial \mathcal{E}|\left(\widehat{t}(s), \widehat{u}(s)\right) \leq 1 \\ \widehat{t}'(s) \left| \widehat{u}' \right|(s) > 0 & \Rightarrow \ |\partial \mathcal{E}|\left(\widehat{t}(s), \widehat{u}(s)\right) = 1 \\ \widehat{t}'(s) = 0 & \Rightarrow \ |\partial \mathcal{E}|\left(\widehat{t}(s), \widehat{u}(s)\right) = 1 \end{cases} \end{split}$$

Viscous slip at jumps:

$$\blacktriangleright \ \widehat{t}'(s_0) = 0 \ \Rightarrow \ |\widehat{u}'|(s_0) > 0 \ \Rightarrow \ |\partial \mathcal{E}|\left(\widehat{t}(s_0), \widehat{u}(s_0)\right) \ge 1$$

▶ in a neighb. $I(s_0)$ $\hat{t}(s) \equiv \hat{t}(s_0)$ & energy identity $\forall s_1 \leq s_2 \in I(s_0)$

Riccarda Rossi

イロン イ団と イヨン ・

3

Flow regimes

Parametrized Rate-Independent Flows

$$\begin{split} \widehat{t}'(s) &\geq 0 \,, \qquad \widehat{t}'(s) + \widehat{u}'(s) > 0 \quad \text{per q.o. } s \in (0, \widehat{T}) \\ \text{En. id: } \mathcal{E}(\widehat{t}(s_2), \widehat{u}(s_2)) - \mathcal{E}(\widehat{t}(s_1), \widehat{u}(s_1)) = \int_{s_1}^{s_2} \left(\partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) \right. \\ \left. - \left| \widehat{u}' \right|(s) \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) \right) \, \mathrm{d}s \quad \forall \, 0 \leq s_1 \leq s_2 \leq \widehat{T} \\ \text{Differential conditions: } \begin{cases} \left| \widehat{u}' \right|(s) = 0 & \Rightarrow \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) \leq 1 \\ \widehat{t}'(s) \left| \widehat{u}' \right|(s) > 0 & \Rightarrow \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) = 1 \\ \widehat{t}'(s) = 0 & \Rightarrow \left| \partial \mathcal{E} \right| (\widehat{t}(s), \widehat{u}(s)) = 1 \end{cases} \end{split}$$

Viscous slip at jumps:

$$\blacktriangleright \ \widehat{t}'(s_0) = 0 \ \Rightarrow \ |\widehat{u}'|(s_0) > 0 \ \Rightarrow \ |\partial \mathcal{E}|\left(\widehat{t}(s_0), \widehat{u}(s_0)\right) \ge 1$$

▶ in a neighb. $I(s_0)$ $\hat{t}(s) \equiv \hat{t}(s_0)$ & energy identity $\forall s_1 \leq s_2 \in I(s_0)$

$$\mathcal{E}(\widehat{t}(s_0), \widehat{u}(s_2)) - \mathcal{E}(\widehat{t}(s_0), \widehat{u}(s_1)) = -\int_{s_1}^{s_2} |\partial \mathcal{E}|(\widehat{t}(s_0), \widehat{u}(s))|\widehat{u}'|(s)) \, \mathrm{d}s$$

which is a "generalized gradient flow"

Riccarda Rossi

Flow regimes

Parametrized Rate-Independent Flows

$$\begin{split} \widehat{t}'(s) &\geq 0 \,, \qquad \widehat{t}'(s) + \widehat{u}'(s) > 0 \quad \text{per q.o. } s \in (0, \widehat{T}) \\ \text{En. id: } \mathcal{E}(\widehat{t}(s_2), \widehat{u}(s_2)) - \mathcal{E}(\widehat{t}(s_1), \widehat{u}(s_1)) = \int_{s_1}^{s_2} \left(\partial_t \mathcal{E}(\widehat{t}(s), \widehat{u}(s)) \widehat{t}'(s) \right. \\ \left. - |\widehat{u}'|(s)| \partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \right) \, \mathrm{d}s \quad \forall \, 0 \leq s_1 \leq s_2 \leq \widehat{T} \\ \text{Differential conditions: } \begin{cases} |\widehat{u}'|(s) = 0 & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) \leq 1 \\ \widehat{t}'(s) |\widehat{u}'|(s) > 0 & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) = 1 \\ \widehat{t}'(s) = 0 & \Rightarrow |\partial \mathcal{E}|(\widehat{t}(s), \widehat{u}(s)) = 1 \end{cases} \end{split}$$

Viscous slip at jumps:

$$\blacktriangleright \ \widehat{t}'(s_0) = 0 \ \Rightarrow \ |\widehat{u}'|(s_0) > 0 \ \Rightarrow \ |\partial \mathcal{E}|\left(\widehat{t}(s_0), \widehat{u}(s_0)\right) \geq 1$$

▶ in a neighb. $I(s_0)$ $\hat{t}(s) \equiv \hat{t}(s_0)$ & energy identity $\forall s_1 \leq s_2 \in I(s_0)$

the viscous transition path followed by a system at a jump is described by a "generalized gradient flow"

・ロト ・聞 ト ・ ヨト ・ ヨトー

3

Riccarda Rossi

Conclusions

Applications

Use the notion of parametrized rate-independent flow to give a

- finer description of rate-independent evolutions
- in Banach spaces
- in metric spaces

《曰》 《圖》 《臣》 《臣》

э

Conclusions

Applications

Use the notion of parametrized rate-independent flow to give a

- finer description of rate-independent evolutions
- in Banach spaces
- in metric spaces

Remark

Parametrized rate-independent evolutions enforce

local, rather than global stability!

because our notion of slope is local

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 回 ● の Q @

Local vs. Global Slope

• Setting: (X, d) complete metric space

Global slope

Given $\mathcal{E} : [0, T] \times X \to (-\infty, +\infty]$ and $u \in D(\mathcal{E}(t, \cdot))$, the global slope of $\mathcal{E}(t, \cdot)$ at u is

$$|\mathcal{G}\ell(\mathcal{E})|(t,u) := \sup_{v \neq u} \frac{(\mathcal{E}(t,u) - \mathcal{E}(t,v))^+}{d(u,v)}$$

Suppose that $\mathcal{E}(t, \cdot)$ is λ -(geodesically) convex, $\lambda \ge 0$. Then $|\partial \mathcal{E}|(t, u) = \mathcal{G}\ell(\mathcal{E})(t, u)$

Riccarda Rossi

Comparison with the energetic formulation

During sliding regime for PRIF we have $|\partial \mathcal{E}|(t, u(t)) = 1$ local stability

For global energetic (metric) solutions we have $|\mathcal{G}\ell(\mathcal{E})|(t, u(t)) = 1$ global stability

Riccarda Rossi

◆□ > ◆□ > ◆□ > ◆□ > ● □

Comparison with the energetic formulation

During sliding regime for PRIF we have $|\partial \mathcal{E}|(t, u(t)) = 1$ local stability

For global energetic (metric) solutions we have $|\mathcal{G}\ell(\mathcal{E})|(t, u(t)) = 1$ global stability

In the case:

$$\begin{cases} B = \mathbb{R}, & \Psi(v) = |v| \quad \forall v \in \mathbb{R} \\ \mathcal{E}(t, u) = \mathcal{W}(u) - \ell(t)u & \forall (t, u) \in [0, T] \times \mathbb{R} \end{cases}$$

Figure: Global energetic vs. PRIF

Riccarda Rossi