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Doubly nonlinear evolution equations

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ), (DNE)

I B is a (separable) Banach space;

I Ψ : B → [0,+∞], with Ψ(0) = 0, l.s.c. and convex

I ∂ convex analysis subdifferential;

I E : [0,T ]× B → (−∞,+∞] is smooth w.r.t. t ∈ (0,T )

I ∂u is the “subdifferential” of E w.r.t. the second variable:

DE if
u 7→ E(t, u) is smooth, ∂E if u 7→ E(t, u) is convex and l.s.c.
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Physical interpretation

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ), (DNE)

is a generalized balance law in Thermomechanics:

I Ψ ∼ dissipation potential

I E ∼ energy functional ( E(·, u) ∼ (power of) external forces)

Two cases:

I Ψ has superlinear growth ↔ dissipation with viscosity effects

lim
‖v‖→+∞

Ψ(v)

‖v‖ = +∞

I Ψ has linear growth and is positively 1-homogeneous

Ψ(λv) = λΨ(v) ∀λ ≥ 0 ∀ v ∈ B

↔ rate-independent models
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The superlinear case

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ), (DNE)

Ψ with superlinear growth

Applications

I elasto-visco-plasticity...

I phase transitions..

I ...

Existence results
E convex (E C1 perturbation of a convex functional), B reflexive:

I existence & approximation of solutions: [Barbu ’75], [Arai ’79], [Semba

’86], [Colli-Visintin ’90], [Colli ’92]

I superlinear growth of Ψ gives control of u′ ⇒ at least u ∈ W 1,1(0,T ;B)
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The rate-independent case

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ), (DNE)

Ψ 1-positively homogeneous

Applications

Suitable choices of Ψ and E lead to applications in

1. quasistatic solid-solid phase transformations (in SMA):
[Mielke-Theil-Levitas ’02], [Mielke-Roub́ıček ’03]

2. quasistatic elastoplasticity: [Dal Maso-De Simone-Mora ’06], [Dal

Maso-De Simone-Mora-Morini ’06], [Mielke et al. ’02, ’03, ’04],..

3. quasistatic crack propagation: [Mainik-Mielke ’04], [Dal

Maso-Francfort-Toader ’05] [Francfort-Mielke ’05]...

4. damage: [Mielke-Roub́ıček ’06]...

5. delamination problems: [Kočvara-Mielke-Roub́ıček ’03]

6. ferromagnetism, ferroelectricity: [Mielke-Timofte ’05]....
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Rate-independence

The simplest ODE example:(
B = R , Ψ(v) = |v | ∀ v ∈ R
E(t, u) = 1

2
|u|2 − `(t)u ∀ (t, u) ∈ [0,T ]× R

(` ∈ C1([0,T ]) ∼ external loading)

Sign(u′(t)) + u(t) 3 `(t), t ∈ (0,T ) (ES)

Remark:

I u is solution of (ES) if and only if u ◦ α is solution of (ES) for every
strictly increasing reparametrization α

I The output u responds to the input ` invariantly for time rescalings,
possibly with hysteresis effects
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Two time scales

In general, in rate-independent systems:

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ) (DNE)

is invariant under time rescalings

We are modelling systems with two time scales:

I a scale intrinsic to the system, fast time scale

I the slow time scale of the external loading ∼ ∂tE (dominating scale)

viscous dissipation is negligible!
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Two time scales

In general, in rate-independent systems:

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ) (DNE)

is invariant under time rescalings

We are modelling systems with two time scales:

I a scale intrinsic to the system, fast time scale

I the slow time scale of the external loading ∼ ∂tE (dominating scale)

viscous dissipation is negligible!

εu′(t) + Sign(u′(t)) + u(t) 3 `(t), t ∈ (0,T ) as ε ↓ 0 (ESε)
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Results in “good” Banach spaces, for convex energies

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ), (DNE)

Ψ 1-positively homogeneous

Existence, approximation results [Mielke-Theil’04, Mielke-R.’07] if:

I B is reflexive

I E ∈ C1([0,T ]× B)

Uniqueness, continuous dependence on the initial data
[Mielke-Theil’04, Mielke-R.’07] if:

I B is reflexive

I E ∈ C1([0,T ]× B)

I u 7→ E(t, u) is uniformly convex
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Non reflexive spaces, non-smooth energies, jumping solutions

In general rate-independent problems:

I B may be non-reflexive (e.g., L1 in phase transitions in SMA),

I B need not have a linear structure (e.g., in crack propagation)

I E may be non-smooth

I E may be non-convex (⇒ NO UNIQUENESS!)

I Ψ has a linear growth at ∞  

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ),

 standard regularity for u is u ∈ BV(0,T ;B) ( u may have jumps!!!)

Riccarda Rossi

Some results on the vanishing viscosity approximation of rate-independent problems



Overview of rate-independent systems The vanishing viscosity approach Analysis in metric spaces Parametrized rate-independent flows

Non reflexive spaces, non-smooth energies, jumping solutions

In general rate-independent problems:

I B may be non-reflexive (e.g., L1 in phase transitions in SMA),

I B need not have a linear structure (e.g., in crack propagation)

I E may be non-smooth

I E may be non-convex (⇒ NO UNIQUENESS!)

I Ψ has a linear growth at ∞  

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ),

 standard regularity for u is u ∈ BV(0,T ;B) ( u may have jumps!!!)

Riccarda Rossi

Some results on the vanishing viscosity approximation of rate-independent problems



Overview of rate-independent systems The vanishing viscosity approach Analysis in metric spaces Parametrized rate-independent flows

Non reflexive spaces, non-smooth energies, jumping solutions

In general rate-independent problems:

I B may be non-reflexive (e.g., L1 in phase transitions in SMA),

I B need not have a linear structure (e.g., in crack propagation)

I E may be non-smooth

I E may be non-convex (⇒ NO UNIQUENESS!)

I Ψ has a linear growth at ∞  

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ),

 standard regularity for u is u ∈ BV(0,T ;B) ( u may have jumps!!!)

Riccarda Rossi

Some results on the vanishing viscosity approximation of rate-independent problems



Overview of rate-independent systems The vanishing viscosity approach Analysis in metric spaces Parametrized rate-independent flows

Mielke’s Global Energetic formulation

Global Energetic solutions [Mielke-Theil’99,’04], [Mielke-Theil-Levitas’02]

u : [0,T ] → B satisfying global stability condition & energy balance

E(t, u(t)) ≤ E(t, z) +D(u(t), z) ∀ z ∈ B ,

E(t, u(t)) + DissD(u, [0, t]) = E(t, u(0)) +

Z t

0

∂tE(r , u(r))dr .

where

I D is a dissipation distance defined from Ψ

I DissD is a global dissipation functional defined from Ψ
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Pro’s

X Completely derivative-free  adaptable to more general
ambient spaces (general topological spaces [Mainik-Mielke’05])

X equivalence with the differential formulation (DNE) if E
convex

BUT (in the non convex case), global stability forces energetic solutions to
jump too early to avoid energy losses
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Bad Vs. Good jumps
The simplest non convex case(

B = R , Ψ(v) = |v | ∀ v ∈ R
E(t, u) = W(u)− `(t)u ∀ (t, u) ∈ [0,T ]× R

I W double well potential

I ` ∈ C1([0,T ]) ∼ external loading

Sign(u′(t)) +W ′(u(t)) 3 `(t), t ∈ (0,T )
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The simplest non convex case(

B = R , Ψ(v) = |v | ∀ v ∈ R
E(t, u) = W(u)− `(t)u ∀ (t, u) ∈ [0,T ]× R

I W double well potential
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Convexification W∗∗ of W
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Bad Vs. Good jumps
The simplest non convex case(

B = R , Ψ(v) = |v | ∀ v ∈ R
E(t, u) = W(u)− `(t)u ∀ (t, u) ∈ [0,T ]× R

I W double well potential

I ` ∈ C1([0,T ]) ∼ external loading

Sign(u′(t)) +W ′(u(t)) 3 `(t), t ∈ (0,T )

Global solutions are given by u(t) = (DW∗∗)−1 (`(t)− 1): jumping too early!
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Bad Vs. Good jumps
The simplest non convex case(

B = R , Ψ(v) = |v | ∀ v ∈ R
E(t, u) = W(u)− `(t)u ∀ (t, u) ∈ [0,T ]× R

I W double well potential

I ` ∈ C1([0,T ]) ∼ external loading

Sign(u′(t)) +W ′(u(t)) 3 `(t), t ∈ (0,T )

We aim to model the “right” hysteresis dynamics
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The vanishing viscosity approach

Aims

I model (“natural”) jumps (due to u ∈ BV(0,T ;B))

I obtain solutions jumping later (than global energetic solutions)

Approach

Consider solutions arising as limits of viscous regularizations for vanishing
viscosity: selection criterion for mechanically feasible jumps

Vanishing viscosity in the applications

I quasistatic evolution of fractures: [Toader-Zanini’06], [Cagnetti’07],

[Cagnetti-Toader’07], [Knees-Mielke-Zanini’07], leading to local
stability-oriented formulations: [Dal Maso-Toader’02], [Negri-Ortner’07],

[Garroni-Larsen07] (threshold evolutions in damage)..

I plasticity with softening: [Dal Maso-DeSimone-Mora-Morini’06]
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The vanishing viscosity analysis by Efendiev & Mielke

Problem
In the vanishing viscosity limit:

I local stability

I energy inequality

may not be enough for controlling jumps. ¿ Which further conditions better
describe them?

The approach by Efendiev-Mielke

I Jumps in the vanishing viscosity limit correspond to viscous transitions
between stable states

I To capture the viscous transition path: NOT SHRINK jumps at a point,
look at curves with their arc length parametrization

I Asymptotic analysis of (reparametrized) trajectories in an extended phase
space
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The vanishing viscosity analysis by Efendiev & Mielke

[Efendiev-Mielke, J. Convex Anal.’06]

Setting:

I B finite dimensional space

I E ∈ C1([0,T ]× B)

I Ψ(u) ∼ ‖u‖ ∀ u ∈ B

The viscous regularization of Ψ:

Ψε(u) := Ψ(u) +
ε

2
‖u‖2 ∀ ε > 0.

Let {uε}ε>0 be the family of solutions of the Cauchy problem(
∂Ψε(uε

′(t)) + DE(t, uε(t)) 3 0 t ∈ (0,T ),

uε(0) = u0.

Problem: limit behaviour of {uε} as ε ↘ 0

Riccarda Rossi

Some results on the vanishing viscosity approximation of rate-independent problems



Overview of rate-independent systems The vanishing viscosity approach Analysis in metric spaces Parametrized rate-independent flows

The vanishing viscosity analysis by Efendiev & Mielke

[Efendiev-Mielke, J. Convex Anal.’06]

Setting:

I B finite dimensional space

I E ∈ C1([0,T ]× B)

I Ψ(u) ∼ ‖u‖ ∀ u ∈ B

The viscous regularization of Ψ:

Ψε(u) := Ψ(u) +
ε

2
‖u‖2 ∀ ε > 0.

Let {uε}ε>0 be the family of solutions of the Cauchy problem(
∂Ψε(uε

′(t)) + DE(t, uε(t)) 3 0 t ∈ (0,T ),

uε(0) = u0.

Problem: limit behaviour of {uε} as ε ↘ 0

Riccarda Rossi

Some results on the vanishing viscosity approximation of rate-independent problems



Overview of rate-independent systems The vanishing viscosity approach Analysis in metric spaces Parametrized rate-independent flows

A rescaling technique

I Arc length parametrization of the graph {(t, uε(t)) : t ∈ [0,T ]}:

sε(t) := t +

Z t

0

‖uε
′(s)‖ds

{sε}ε is bounded in L∞(0,T ): up to a subseq. sε(T ) → bT .

I Introduce the rescaled functions

btε(s) := s−1
ε (s), buε(s) := uε(btε(s)) ∀s ∈ [0, sε(T )]

I From the normalization condition

bt′ε(s) + ‖bu′ε(s)‖ = 1 per q.o. s ∈ (0, sε(T ))

⇒ a priori estimates for {btε}, {buε}
I Ascoli-Arzelà + finite dimension

btε → bt, buε → bu uniformly on [0, bT ]
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A rescaling technique

The limit problem solved by (bt, bu)8><>:
∂bΨ(bu′(s)) + DE(bt(s), bu(s)) 3 0 s ∈ (0, bT )bu(0) = u0, bt(0) = 0, bt(bT ) = T ,bt′(s) + ‖bu′(s)‖ = 1 s ∈ (0, bT )

where bΨ(u′) :=

(
Ψ(u′) ‖u′‖ ≤ 1,

+∞ ‖u′‖ > 1
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Vanishing viscosity limit: sliding vs. viscous slips

8><>:
∂bΨ(bu′(s)) + DE(bt(s), bu(s)) 3 0,bu(0) = u0, bt(0) = 0, bt(bT ) = T ,bt′(s) + ‖bu′(s)‖ = 1bΨ is NOT 1-homogeneous ⇒ the problem is NOT rate-independent!

“Sliding vs. viscous slips”

Three regimes
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Vanishing viscosity limit: sliding vs. viscous slips

8><>:
∂bΨ(bu′(s)) + DE(bt(s), bu(s)) 3 0,bu(0) = u0, bt(0) = 0, bt(bT ) = T ,bt′(s) + ‖bu′(s)‖ = 1bΨ is NOT 1-homogeneous ⇒ the problem is NOT rate-independent!

“Sliding vs. viscous slips”

Three regimes

‖bu′(s)‖ = 0 ⇔ bt′(s) = 1 Sticking

0 < ‖bu′(s)‖ < 1 ⇔ bt′(s) ∈ (0, 1) Sliding

‖bu′(s)‖ = 1 ⇔ bt′(s) = 0 Viscous slip
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Vanishing viscosity limit: sliding vs. viscous slips

8><>:
∂bΨ(bu′(s)) + DE(bt(s), bu(s)) 3 0,bu(0) = u0, bt(0) = 0, bt(bT ) = T ,bt′(s) + ‖bu′(s)‖ = 1bΨ is NOT 1-homogeneous ⇒ the problem is NOT rate-independent!

“Sliding vs. viscous slips”

Three regimes

1. for ‖bu′(s)‖ = 0 the system is stationary

2. for 0 < ‖bu′(s)‖ < 1 the system is driven by rate-independent dissipation:
reparametrizing bu leads to a standard rate-independent problem

3. ‖bu′(s)‖ = 1 corresponds to viscous transition between stable states
(“instantaneous” w.r.t. the slow time scale, whence bt′(s) = 0); viscous
path described by a gradient flow
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Towards metric spaces

In rate-independent applications

I E is non-smooth

I E is non-convex

I B does not have the Radon-Nikodým property (e.g., L1 in phase
transitions in SMA): absolutely continuous curves in L1 need not be
differentiable a.e.;

I B need not have a linear structure
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Outlook

Our goal:

I Extend the Efendiev-Mielke vanishing viscosity analysis to a metric setting

I Obtain a new notion of rate-independent evolution in a metric setting

I The metric framework will lead to local, rather than global stability!

Program

In a metric framework:

1. Approximate rate-independent evolutions with viscous evolutions
[Mielke, R., Savaré, quasi-preprint’08]

2. Analysis of doubly nonlinear evolution equations where dissipation with
superlinear growth: existence & approximation of solutions [Mielke, R.,

Savaré, Annali SNS Pisa’08]
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[Mielke, R., Savaré, quasi-preprint’08]

2. Analysis of doubly nonlinear evolution equations where dissipation with
superlinear growth: existence & approximation of solutions [Mielke, R.,
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Doubly nonlinear evolutions in metric spaces

Analysis of
∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 t ∈ (0,T ) (DNE)

Ψ with superlinear growth

in the framework of a metric space (X , d).

Relying on: theory of gradient flows in metric spaces (i.e. quadratic Ψ):

I De Giorgi, Marino, Saccon, Tosques, Degiovanni, Ambrosio ’80 ∼ ’90
 theory of Curves of Maximal Slope and Minimizing Movements

I [ Gradient flows in metric spaces, Ambrosio-Gigli-Savaré 2005]  systematic
theory of existence, approximation & uniqueness of solutions of metric
gradient flows, with applications to gradient flows in Wasserstein spaces.
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Towards the metric formulation

Problem:
How to formulate

“ ∂Ψ(u′(t)) + ∂uE(t, u(t)) = 0, t ∈ (0,T ) ”

without a linear/differential structure on X?

Heuristics:
If the chain rule holds

d

dt
E(t, u(t))− ∂tE(t, u(t)) = 〈∂uE(t, u(t)), u′(t)〉

then (DNE) is equivalent to

Ψ(u′(t))) + Ψ∗(−∂uE(t, u(t))) +
d

dt
E(t, u(t))− ∂tE(t, u(t)) = 0 t ∈ (0,T )

(abuse of notation: ∂uE(t, u(t)) ∼ singleton...)
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Towards the metric formulation

In the particular case

Ψ(x) :=
|x |p

p
, 1 < p <∞, Ψ∗(x) :=

|x |q

q
,

1

p
+

1

q
= 1

Ψ(u′(t))) + Ψ∗(−∂uE(t, u(t))) +
d

dt
E(t, u(t))− ∂tE(t, u(t)) = 0 t ∈ (0,T )

New formulation features the modulus of derivatives, rather than derivatives!

Adaptable to metric spaces upon introducing suitable “metric surrogates” of
“modulus of derivatives”.
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The metric derivative

• Setting: (X , d) complete metric space

Metric derivative

I We say that a curve u : [0,T ] → X is absolutely continuous if

∃m ∈ L1(0,T ) : d(u(t), u(s)) ≤
Z t

s

m(r) dr ∀ 0 ≤ s ≤ t ≤ T .

I Given u ∈ AC(0,T ;X ), its metric derivative

|u′|(t) := lim
h→0

d(u(t), u(t + h))

|h| for a.e. t ∈ (0,T )

‖u′(t)‖  |u′|(t)
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Slope & Chain rule

• Setting: (X , d) complete metric space

Local slope & Chain rule

I Given E : [0,T ]× X → (−∞,+∞] and u ∈ D(E(t, ·)), the local slope of
E(t, ·) at u is

|∂E| (t, u) := lim sup
v→u

(E(t, u)− E(t, v))+

d(u, v)

‖ − ∂uE(t, u)‖  |∂E| (t, u)

I E complies with the chain rule w.r.t. |∂E| if ∀v ∈ AC(0,T ;D(E)) the
map t 7→ E(t, v(t)) is absolutely continuous and

∂tE(t, v(t))− d

dt
E(t, v(t)) ≤ |v ′|(t) |∂E| (t, v(t)) per q.o. t ∈ (0,T ).
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The metric formulation
• Basic setting:

I (X , d) complete metric space

I Energy  E : [0,T ]× X → (−∞,+∞] l.s.c., complying with the chain
rule w.r.t. |∂E|

I Dissipation  ψ : R+ → R+ l.s.c., convex, ψ(0) = 0, with

lim
x→+∞

ψ(x)

x
= +∞

Metric formulation
A curve u ∈ AC(0,T ;X ) satisfies the metric formulation of

if for a.e. t ∈ (0,T )

ψ(|u′|(t)) + ψ∗(|∂E|(t, u(t))) +
d

dt
E(t, u(t))− ∂tE(t, u(t)) = 0
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An existence result

Theorem [Mielke, R., Savaré, Annali SNS Pisa’08]

I ψ : R+ → R+ convex, l.s.c., ψ(0) = 0, superlinear growth

I E : [0,T ]× X → (−∞,+∞] smooth w.r.t. t ∈ [0,T ]

I E l.s.c. and coercive w.r.t. u ∈ X , chain rule w.r.t. |∂E|
I u 7→ |∂E|(t, u) is l.s.c. (along bounded energy sequences)

Then, for all u0 ∈ D(E) there exists a curve u ∈ AC(0,T ;X ) such that
u(0) = u0 and

ψ(|u′|(t)) + ψ∗ (|∂E|(t, u(t))) = ∂tE(t, u(t))− d

dt
E(t, u(t)

for a.e. t ∈ (0,T ) .

Applications: existence results for doubly nonlinear evolution equations in
(possibly non reflexive) spaces

Riccarda Rossi

Some results on the vanishing viscosity approximation of rate-independent problems



Overview of rate-independent systems The vanishing viscosity approach Analysis in metric spaces Parametrized rate-independent flows

An existence result

Theorem [Mielke, R., Savaré, Annali SNS Pisa’08]
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Approximation of rate-independent problems with viscous evolutions

Second step

In the metric space (X , d), approximate

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in B ′ t ∈ (0,T ), (DNE)

Ψ 1-positively homogeneous

with the viscous evolution

εu′(t) + ∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 t ∈ (0,T ), as ε↘ 0
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Approximation of rate-independent problems with viscous evolutions

In the metric setting

I (X , d) metric space

I E : [0,T ]× X → R ∪ {+∞}: assumptions for ∃ + Chain rule

I ψ : R+ → R+ convex 1-positively homogeneous (ψ(r) = r ∀ r ∈ R+)

I Viscous regularization of ψ: ψε(x) := x + ε
2
x2 ∀ x ≥ 0 ∀ ε > 0.

I {uε}ε>0 ⊂ AC(0,T ;X ): metric solutions of8>><>>:
d

dt
E(t, uε(t))− ∂tE(t, uε(t)) =

− ψε(|uε
′|(t))− ψε

∗(|∂E| (t, uε(t))) per q.o. t ∈ (0,T )

uε(0) = u0.

I Problem: ¿ limit of {uε} as ε ↘ 0?
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Vanishing viscosity revisited

Extend the Mielke-Efendiev technique to the metric setting:

♣ reparametrize by the arc length of {(t, uε(t)) : t ∈ [0,T ]}:(
sε(t) := t +

R t

0
|uε

′|(r) drbtε(s) := s−1
ε (s), buε(s) := uε(btε(s)) s ∈ [0, sε(T )]
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Vanishing viscosity revisited

Extend the Mielke-Efendiev technique to the metric setting:

♣ reparametrize by the arc length of {(t, uε(t)) : t ∈ [0,T ]}:(
sε(t) := t +

R t

0
|uε

′|(r) drbtε(s) := s−1
ε (s), buε(s) := uε(btε(s)) s ∈ [0, sε(T )]

♣ you pass from8>><>>:
d

dt
E(t, uε(t))− ∂tE(t, uε(t)) =

− ψε(|uε
′|(t))− ψε

∗(|∂E| (t, uε(t)))

uε(0) = u0.

t ∈ (0,T )
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Vanishing viscosity revisited

Extend the Mielke-Efendiev technique to the metric setting:

♣ reparametrize by the arc length of {(t, uε(t)) : t ∈ [0,T ]}:(
sε(t) := t +

R t

0
|uε

′|(r) drbtε(s) := s−1
ε (s), buε(s) := uε(btε(s)) s ∈ [0, sε(T )]

♣ to 8><>:
btε(0) = 0 btε(sε(T )) = Tbt′ε(s) + |bu′ε|(s) = 1 per q.o. s ∈ (0, sε(T ))

rescaled metric formulation of (DNE) (ψε, E)

Problem: ¿ asymptotic analysis of {(btε, buε)} as ε ↘ 0?
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The asymptotic analysis result

Let bψ(r) :=

(
r r ∈ [0, 1] ,

+∞ r > 1 ,
bT := lim

ε↓0
sε(T ) .

Theorem [Mielke, R., Savaré]

Assumptions: like for ∃ of metric solution (in particular, chain rule).

Then, up to a subsequence, {(btε, buε)} converges as ε ↘ 0 to

(bt, bu) ∈ C0
Lip([0, bT ]; [0,T ]× X ), which satisfies(bt(0) = 0 bt(bT ) = Tbt′(s) + |bu′|(s) = 1 per q.o. s ∈ (0, bT )

and the “rescaled metric formulation”

d

ds
E(bt(s), bu(s))− ∂tE(bt(s), bu(s))bt′(s)
= − bψ(|bu′|(s))− bψ∗ `

|∂E| (bt(s), bu(s))
´

s ∈ (0, bT ) .
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More insight into the vanishing viscosity limit

(bt, bu) ∈ C0
Lip([0, bT ]; [0,T ]× X ) bt(0) = 0 bt(bT ) = Tbt′(s) + bu′(s) = 1 per q.o. s ∈ (0, bT )

d

ds
E(bt(s), bu(s))− ∂tE(bt(s), bu(s))bt′(s) = − bψ(|bu′|(s))− bψ∗ `

|∂E| (bt(s), bu(s))
´

per q.o. s ∈ (0, bT )

|∂E| (bt(s),bu(s)) ∈ ∂ bψ(|bu′|(s)) per q.o. s ∈ (0, bT )
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More insight into the vanishing viscosity limit

(bt, bu) ∈ C0
Lip([0, bT ]; [0,T ]× X ) bt(0) = 0 bt(bT ) = Tbt′(s) + bu′(s) = 1 per q.o. s ∈ (0, bT )8<:En. id.: d

ds
E(bt(s), bu(s))− ∂tE(bt(s), bu(s))bt′(s) = −|bu′|(s) |∂E| (bt(s), bu(s))

Constraint: |∂E| (bt(s), bu(s)) ∈ ∂ bψ(|bu′|(s)) per q.o. s ∈ (0, bT )

|∂E| (bt(s),bu(s)) ∈ ∂ bψ(|bu′|(s)) per q.o. s ∈ (0, bT )
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Constraint: |∂E| (bt(s), bu(s)) ∈ ∂ bψ(|bu′|(s)) per q.o. s ∈ (0, bT )
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More insight into the vanishing viscosity limit

(bt, bu) ∈ C0
Lip([0, bT ]; [0,T ]× X ) bt(0) = 0 bt(bT ) = Tbt′(s) + bu′(s) = 1 per q.o. s ∈ (0, bT )

En. id.:
d

ds
E(bt(s), bu(s))− ∂tE(bt(s), bu(s))bt′(s) = −|bu′|(s) |∂E| (bt(s), bu(s))

Three regimes:

8><>:
|bu′|(s) = 1 (⇔ bt′(s) = 0 ) ⇒ |∂E| (bt(s), bu(s)) ≥ 1

|bu′|(s) ∈ (0, 1) (⇔ bt′(s) ∈ (0, 1) ) ⇒ |∂E| (bt(s), bu(s)) = 1

|bu′|(s) = 0 (⇔ bt′(s) = 1 ) ⇒ |∂E| (bt(s), bu(s)) ≤ 1

|∂E| (bt(s),bu(s)) ∈ ∂ bψ(|bu′|(s)) per q.o. s ∈ (0, bT )
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Towards Parametrized Rate-Independent Flows

These are the properties to retain:

(bt, bu) ∈ AC(0, bT ; [0,T ]× X ) bt(0) = 0 bt(bT ) = Tbt′(s) + bu′(s) > 0 per q.o. s ∈ (0, bT )

En. id.:
d

ds
E(bt(s), bu(s))− ∂tE(bt(s), bu(s))bt′(s) = −|bu′|(s) |∂E| (bt(s), bu(s))

Three regimes:

8><>:
bt′(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≥ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s), bu(s)) = 1

|bu′|(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≤ 1
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Parametrized Rate-Independent Flows

Definition
A pair (bt, bu) ∈ AC(0, bT ; [0,T ]× X ) is a parametrized rate-independent flow
if

1. bt is non-decreasing, with bt(0) = 0 and bt(bT ) = T

2. there holds bt′(s) + bu′(s) > 0 per q.o. s ∈ (0, bT )

3. the map s ∈ [0, bT ] 7→ E(bt(s), bu(s)) is absolutely continuous and

En. id.:
d

ds
E(bt(s), bu(s))− ∂tE(bt(s), bu(s))bt′(s) = −|bu′|(s) |∂E| (bt(s), bu(s))

Three regimes:

8><>:
bt′(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≥ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s), bu(s)) = 1

|bu′|(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≤ 1
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Parametrized Rate-Independent Flows: rate-invariance

Parametrized Rate-Independent Flow

En. id.:
d

ds
E(bt(s), bu(s))− ∂tE(bt(s), bu(s))bt′(s) = −|bu′|(s) |∂E| (bt(s), bu(s))

Three regimes:

8><>:
bt′(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≥ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s), bu(s)) = 1

|bu′|(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≤ 1

Main features

I Approximable (via vanishing viscosity) solutions are PRIFs.

I The class of PRIF is invariant for (strictly increasing) reparametrizations
⇒ PRIF is a truly rate-independent notion.
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Parametrized Rate-Independent Flows: rate-invariance

Parametrized Rate-Independent Flow

En. id.:
d

ds
E(bt(s), bu(s))− ∂tE(bt(s), bu(s))bt′(s) = −|bu′|(s) |∂E| (bt(s), bu(s))

Three regimes:

8><>:
bt′(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≥ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s), bu(s)) = 1

|bu′|(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≤ 1

Main features

I Approximable (via vanishing viscosity) solutions are PRIFs.

I The class of PRIF is invariant for (strictly increasing) reparametrizations
⇒ PRIF is a truly rate-independent notion.
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Parametrized Rate-Independent Flows: flow regimes

Parametrized Rate-Independent Flows

En. id.:
d

ds
E(bt(s), bu(s))− ∂tE(bt(s), bu(s))bt′(s) = −|bu′|(s) |∂E| (bt(s), bu(s))

Three regimes:

8><>:
|bu′|(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≤ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s), bu(s)) = 1bt′(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≥ 1

Mechanical interpretation

I sticking ↔ |bu′|(s) = 0

I sliding ↔ bt′(s)|bu′|(s) > 0

I viscous slip ↔ bt′(s) = 0.
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Parametrized Rate-Independent Flows: flow regimes
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Parametrized Rate-Independent Flows: flow regimes

Parametrized Rate-Independent Flows

En. id.:
d

ds
E(bt(s), bu(s))− ∂tE(bt(s), bu(s))bt′(s) = −|bu′|(s) |∂E| (bt(s), bu(s))

Three regimes:

8><>:
|bu′|(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≤ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s), bu(s)) = 1bt′(s) = 0 ⇒ |∂E| (bt(s), bu(s)) ≥ 1
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I viscous slip ↔ bt′(s) = 0.
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Flow regimes

Parametrized Rate-Independent Flowsbt′(s) ≥ 0 , bt′(s) + bu′(s) > 0 per q.o. s ∈ (0, bT )

En. id: E(bt(s2),bu(s2))− E(bt(s1),bu(s1)) =

Z s2

s1

“
∂tE(bt(s),bu(s))bt′(s)

− |bu′|(s) |∂E| (bt(s),bu(s))
”

ds ∀ 0 ≤ s1 ≤ s2 ≤ bT
Differential conditions:

8><>:
|bu′|(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≤ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s),bu(s)) = 1bt′(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≥ 1

Sticking:

I |bu′|(s0) = 0 ⇒ bt′(s0) > 0 and |∂E| (bt(s0), bu(s0)) ≤ 1 (local stability)

I in a neighb. I (s0) we have bu(s) ≡ bu(s0) and the energy identity

E(bt(s2), bu(s0))−E(bt(s1), bu(s0)) =

Z s2

s1

∂tE(bt(s), bu(s0))bt′(s) ds ∀ s1 ≤ s2 ∈ I (s0) .
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Flow regimes

Parametrized Rate-Independent Flowsbt′(s) ≥ 0 , bt′(s) + bu′(s) > 0 per q.o. s ∈ (0, bT )

En. id: E(bt(s2),bu(s2))− E(bt(s1),bu(s1)) =

Z s2

s1

“
∂tE(bt(s),bu(s))bt′(s)

− |bu′|(s) |∂E| (bt(s),bu(s))
”

ds ∀ 0 ≤ s1 ≤ s2 ≤ bT
Differential conditions:

8><>:
|bu′|(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≤ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s),bu(s)) = 1bt′(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≥ 1

Sticking:

I |bu′|(s0) = 0 ⇒ bt′(s0) > 0 and |∂E| (bt(s0), bu(s0)) ≤ 1 (local stability)

I in a neighb. I (s0) we have bu(s) ≡ bu(s0) and the energy identity

E(bt(s2), bu(s0))−E(bt(s1), bu(s0)) =
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s1

∂tE(bt(s), bu(s0))bt′(s) ds ∀ s1 ≤ s2 ∈ I (s0) .
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Flow regimes

Parametrized Rate-Independent Flowsbt′(s) ≥ 0 , bt′(s) + bu′(s) > 0 per q.o. s ∈ (0, bT )

En. id: E(bt(s2),bu(s2))− E(bt(s1),bu(s1)) =

Z s2

s1

“
∂tE(bt(s),bu(s))bt′(s)

− |bu′|(s) |∂E| (bt(s),bu(s))
”

ds ∀ 0 ≤ s1 ≤ s2 ≤ bT
Differential conditions:

8><>:
|bu′|(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≤ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s),bu(s)) = 1bt′(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≥ 1

Sliding:

I bt′(s0) > 0 & |bu′|(s0) > 0 ⇒ |∂E| (bt(s0), bu(s0)) = 1 (local stability)

I in a neighb. I (s0) the energy identity reads ∀ s1 ≤ s2 ∈ I (s0)

E(bt(s2), bu(s2))− E(bt(s1), bu(s1)) =

Z s2

s1

“
∂tE(bt(s), bu(s))bt′(s)− |bu′|(s)”

ds
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Flow regimes

Parametrized Rate-Independent Flowsbt′(s) ≥ 0 , bt′(s) + bu′(s) > 0 per q.o. s ∈ (0, bT )

En. id: E(bt(s2),bu(s2))− E(bt(s1),bu(s1)) =

Z s2

s1

“
∂tE(bt(s),bu(s))bt′(s)
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”
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Differential conditions:
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Flow regimes

Parametrized Rate-Independent Flowsbt′(s) ≥ 0 , bt′(s) + bu′(s) > 0 per q.o. s ∈ (0, bT )

En. id: E(bt(s2),bu(s2))− E(bt(s1),bu(s1)) =

Z s2

s1

“
∂tE(bt(s),bu(s))bt′(s)

− |bu′|(s) |∂E| (bt(s),bu(s))
”

ds ∀ 0 ≤ s1 ≤ s2 ≤ bT
Differential conditions:

8><>:
|bu′|(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≤ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s),bu(s)) = 1bt′(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≥ 1

Viscous slip at jumps:

I bt′(s0) = 0 ⇒ |bu′|(s0) > 0 ⇒ |∂E| (bt(s0), bu(s0)) ≥ 1

I in a neighb. I (s0) bt(s) ≡ bt(s0) & energy identity ∀ s1 ≤ s2 ∈ I (s0)

Riccarda Rossi

Some results on the vanishing viscosity approximation of rate-independent problems



Overview of rate-independent systems The vanishing viscosity approach Analysis in metric spaces Parametrized rate-independent flows

Flow regimes

Parametrized Rate-Independent Flowsbt′(s) ≥ 0 , bt′(s) + bu′(s) > 0 per q.o. s ∈ (0, bT )

En. id: E(bt(s2),bu(s2))− E(bt(s1),bu(s1)) =
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s1

“
∂tE(bt(s),bu(s))bt′(s)

− |bu′|(s) |∂E| (bt(s),bu(s))
”
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Flow regimes

Parametrized Rate-Independent Flowsbt′(s) ≥ 0 , bt′(s) + bu′(s) > 0 per q.o. s ∈ (0, bT )

En. id: E(bt(s2),bu(s2))− E(bt(s1),bu(s1)) =

Z s2

s1

“
∂tE(bt(s),bu(s))bt′(s)

− |bu′|(s) |∂E| (bt(s),bu(s))
”

ds ∀ 0 ≤ s1 ≤ s2 ≤ bT
Differential conditions:

8><>:
|bu′|(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≤ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s),bu(s)) = 1bt′(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≥ 1

Viscous slip at jumps:

I bt′(s0) = 0 ⇒ |bu′|(s0) > 0 ⇒ |∂E| (bt(s0), bu(s0)) ≥ 1

I in a neighb. I (s0) bt(s) ≡ bt(s0) & energy identity ∀ s1 ≤ s2 ∈ I (s0)

E(bt(s0), bu(s2))− E(bt(s0), bu(s1)) = −
Z s2

s1

|∂E| (bt(s0), bu(s)) |bu′|(s)”
ds

which is a “generalized gradient flow”
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Flow regimes

Parametrized Rate-Independent Flowsbt′(s) ≥ 0 , bt′(s) + bu′(s) > 0 per q.o. s ∈ (0, bT )

En. id: E(bt(s2),bu(s2))− E(bt(s1),bu(s1)) =

Z s2

s1

“
∂tE(bt(s),bu(s))bt′(s)

− |bu′|(s) |∂E| (bt(s),bu(s))
”

ds ∀ 0 ≤ s1 ≤ s2 ≤ bT
Differential conditions:

8><>:
|bu′|(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≤ 1bt′(s) |bu′|(s) > 0 ⇒ |∂E| (bt(s),bu(s)) = 1bt′(s) = 0 ⇒ |∂E| (bt(s),bu(s)) ≥ 1

Viscous slip at jumps:

I bt′(s0) = 0 ⇒ |bu′|(s0) > 0 ⇒ |∂E| (bt(s0), bu(s0)) ≥ 1

I in a neighb. I (s0) bt(s) ≡ bt(s0) & energy identity ∀ s1 ≤ s2 ∈ I (s0)

the viscous transition path followed by a system at a jump

is described by a “generalized gradient flow”
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Conclusions

Applications

Use the notion of parametrized rate-independent flow to give a

I finer description of rate-independent evolutions

I in Banach spaces

I in metric spaces

Remark
Parametrized rate-independent evolutions enforce

local, rather than global stability!

because our notion of slope is local
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Local vs. Global Slope

• Setting: (X , d) complete metric space

Global slope

Given E : [0,T ]× X → (−∞,+∞] and u ∈ D(E(t, ·)), the global slope of
E(t, ·) at u is

|G`(E)| (t, u) := supv 6=u
(E(t, u)− E(t, v))+

d(u, v)

Suppose that E(t, ·) is λ–(geodesically) convex, λ ≥ 0. Then

|∂E| (t, u) = G`(E)(t, u)

Riccarda Rossi
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Comparison with the energetic formulation

During sliding regime for PRIF we have

|∂E| (t, u(t)) = 1 local stability

For global energetic (metric) solutions we have

|G`(E)|(t, u(t)) = 1 global stability

In the case: (
B = R , Ψ(v) = |v | ∀ v ∈ R
E(t, u) = W(u)− `(t)u ∀ (t, u) ∈ [0,T ]× R

Figure: Global energetic vs. PRIF
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