Prime proprietà delle funzioni

Riccarda Rossi

Università di Brescia

Analisi I

Definizione di funzione:

è una terna (A, B, f), con:

- ► A, B insiemi (non vuoti)
- ▶ f: legge che ad ogni elemento $x \in A$ associa <u>uno e un solo</u> elemento di $f(x) \in B$.

Notazioni:

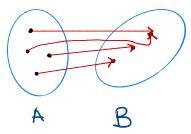
- ▶ A si dice dominio di f, anche denotato con dom(f), D_f
- ▶ B si dice codominio di f,
- ightharpoonup scriviamo $f:A\to B$, e

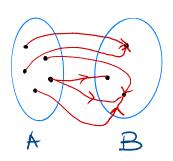
$$x \in dom(f) \mapsto f(x)$$

per la legge che alla variabile indipendente x associa la sua immagine f(x).

• Riscriviamo la condizione nella definizione di funz.

 $\forall x \in A, \quad \exists! y \in B : y = f(x).$





La def. permette che a diversi x corrisponda lo stesso y.

- Codominio e insieme immagine: Data $f: A \rightarrow B$,
 - ▶ il codominio B è oggetto poco significativo: solo un "contenitore" dei valori assunti da f.

Non univocamente determinato:

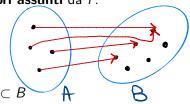
se C è insieme C tale che $B \subset C$ allora C è un codominio per f

Oggetto significativo: insieme immagine

$$\operatorname{im}(f) = \{ y \in B : \exists x \in A, \quad y = f(x) \} = f(A)$$

è l'insieme dei **valori assunti** da f.

In generale, im(f)



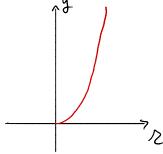
• Grafico di una funzione: Data $f: A \rightarrow B$, il grafico di f è

$$\operatorname{graf}(f):=\{(x,y)\in A\times B\,:x\in A,\ y=f(x)\}\ .$$

 $graf(f) \subseteq A \times B$ è un insieme di coppie ordinate.

Esempio 1:

La funzione f che a ogni numero reale non negativo r associa l'area del cerchio di raggio r.



Esempio 2:

la somma di due numeri reali è una funzione

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 $(x, y) \in \mathbb{R}^2 \mapsto x + y$

D'ora in poi, consideriamo solo funzioni

$$f: \mathrm{dom}(f) \subset \mathbb{R} \to \mathbb{R}$$
,

- funzioni <u>reali</u> ($\operatorname{codom}(f) = \mathbb{R}$),
- ▶ di <u>variabile reale</u> ($dom(f) \subseteq \mathbb{R}$).
- Allora

$$\operatorname{graf} f = \{(x, y) \in \operatorname{dom}(f) \times \mathbb{R} : x \in \operatorname{dom}(f), \ y = f(x)\} \subset \mathbb{R}^2 \text{ e}$$

$$\forall x \in \operatorname{dom}(f), \quad \exists! \ y \in \mathbb{R} : (x, y) \in \operatorname{graf}(f)$$

• Esempio: dati

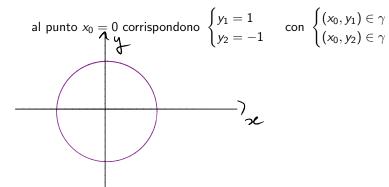
$$A = \left\{ x \in \mathbb{R} : -1 \le x \le 1 \right\},$$

$$B = \mathbb{R}$$

consideriamo la circonferenza $\subset A \times B$

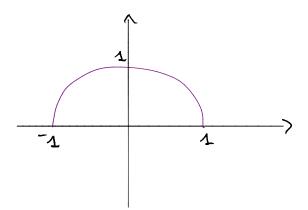
$$\gamma = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, \quad x^2 + y^2 = 1\}.$$

 $\underset{\sim}{\text{2.5}} \gamma$ è il grafico di una funzione da A in B?? **NO!!**



Invece

 $\gamma \cap \{(x,y) : x \in A \ y \ge 0\}$ è un grafico.



- Una funzione <u>reale di variabile reale</u> è ben definita quando sono dati:
 - ▶ il dominio di *f*
 - ▶ la legge che definisce *f*
- Quindi, $f_1: \mathrm{dom}(f_1) \to \mathbb{R}$ e $f_2: \mathrm{dom}(f_2) \to \mathbb{R}$ coincidono se e solo se

$$\operatorname{dom}(f_1) = \operatorname{dom}(f_2)$$
 e
 $f_1(x) = f_2(x) \quad \forall x \in \operatorname{dom}(f_1) = \operatorname{dom}(f_2).$

Esempio:

Dominio naturale di definizione

Quando una funzione reale di variabile reale è data senza che venga specificato il dominio, si sottintende che

il dominio è l'insieme di tutti gli $x \in \mathbb{R}$ tali che f(x) ha senso ed è un numero reale.

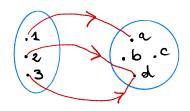
Esempi:

$$f_1(x) := \frac{1}{x^2 - 1}$$
.

 $f_2(x) := \sqrt{4-x^2}$.

♦ Funzioni suriettive, iniettive, biiettive

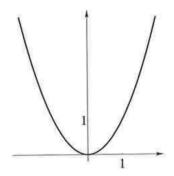
Sia $f:A\to B$. Dato $y\in B$, un elemento $x\in A$ si chiama controimmagine di y tramite f se f(x)=y.



- Denotiamo con $f^{-1}(\{y\})$ l'insieme (eventualmente vuoto) delle controimmagini di y tramite f.
- Si ha

$$y \in \operatorname{im}(f) \Leftrightarrow f^{-1}(\{y\}) \neq \emptyset$$

- Interpretazione grafica per $f: \text{dom}(f) \to \mathbb{R}$: dato $\bar{y} \in \mathbb{R}$, individuo graficamente l'insieme controimmagine $f^{-1}(\{\bar{y}\})$ considerando la retta $r_{\bar{y}}$ di equaz. $y = \bar{y}$:
 - ▶ se $y = \bar{y}$ non interseca $\operatorname{graf}(f)$ in alcun punto, allora $f^{-1}(\{\bar{y}\}) = \emptyset$;
 - ▶ viceversa, per ogni punto $(x, \bar{y}) \in \operatorname{graf}(f) \cap r_{\bar{y}}$, si ha $x \in f^{-1}(\{\bar{y}\})$.



Suriettività

Sia $f: A \rightarrow B$. Diciamo che f è <u>suriettiva</u> se

$$im(f) = B$$

o, equivalentemente, se

$$\forall y \in B \ \exists x \in A : f(x) = y.$$

• N.B. nel caso di una funzione reale di variabile reale $f: dom(f) \to \mathbb{R}$, considereremo sempre come codominio l'insieme \mathbb{R} . Quindi

$$f$$
 è suriettiva se $\operatorname{im}(f) = \mathbb{R}$.

• Interpretazione grafica della suriettività: Una

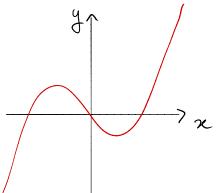
 $f: \mathrm{dom}(f) \to \mathbb{R}$ è suriettiva se e solo se

$$\forall \, \bar{y} \in \mathbb{R}, \, \bar{y} \in \operatorname{im}(f) \iff \forall \, \bar{y} \in \mathbb{R}, \, f^{-1}(\{\bar{y}\}) \neq \emptyset$$

e quindi se e solo se

$$\underline{\mathsf{per} \; \mathsf{ogni}} \; \; \bar{y} \in \mathbb{R} \mathsf{, \; la \; retta} \; y = \bar{y}$$

interseca graf(f) in **almeno** un punto.



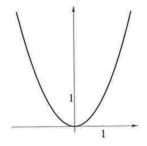
Esempi

▶ $f: \mathbb{R} \to \mathbb{R}$ data da f(x) = x è suriettiva:

▶ la funzione $f(x) = \frac{1}{x}$ definita per $x \in \mathbb{R} \setminus \{0\}$ non è suriettiva

Esempi

▶ $f: \mathbb{R} \to \mathbb{R}$ data da $f(x) = x^2$ non è suriettiva da \mathbb{R} in \mathbb{R} , perché



Iniettività

Sia $f: A \rightarrow B$. Diciamo che f è <u>iniettiva</u> se

$$\forall x_1, x_2 \in A, [(x_1 \neq x_2) \Rightarrow (f(x_1) \neq f(x_2))]$$

$$\downarrow \! \downarrow$$

$$\forall x_1, x_2 \in A, [(f(x_1) = f(x_2) \Rightarrow (x_1 = x_2)].$$

• N.B.: non confondere l'ordine in cui è scritta la formula: infatti la proprietà

$$\forall x_1, x_2 \in A, [(x_1 = x_2) \Rightarrow (f(x_1) = f(x_2))]$$

è verificata da ogni funzione.

L'iniettività

$$\forall x_1, x_2 \in A, [(f(x_1) = f(x_2) \Rightarrow (x_1 = x_2)]$$

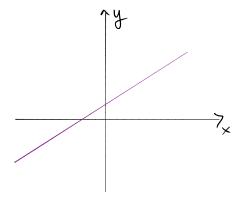
implica che

a ogni elemento $y \in B$ ha al più una controimmagine, cioè

$$\begin{cases} y \in B \setminus \operatorname{im}(f) \Rightarrow f^{-1}(\{y\}) = \emptyset \\ y \in \operatorname{im}(f) \Rightarrow f^{-1}(\{y\}) \text{ è singoletto} \end{cases}$$

Interpretazione grafica della iniettività: Una $f:\mathrm{dom}(f) \to \mathbb{R}$ è iniettiva se e solo se

 $\underline{\mathsf{per}\ \mathsf{ogni}}\ \bar{y} \in \mathbb{R}$, la retta $y = \bar{y}$ interseca $\mathrm{graf}(f)$ in **al massimo** un punto.

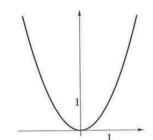


• Esempi:

1. $f: \mathbb{R} \to \mathbb{R}$ data da f(x) = x è iniettiva:

2. la funzione $f(x) = \frac{1}{x}$ definita per $x \in \mathbb{R} \setminus \{0\}$ è iniettiva

• $f: \mathbb{R} \to \mathbb{R}$ data da $f(x) = x^2$ non è iniettiva



Invertibilità

Sia $f: A \to \operatorname{im}(f)$ una funzione iniettiva. Quindi

$$\begin{cases} 1. \ \forall \ y \in \operatorname{im}(f), & \exists \ x \in A : \ y = f(x), \\ 2. \ l'elemento \ x \in A \ \text{al punto } 1. \ \grave{e} \ \text{unico.} \end{cases}$$

cioè

$$\forall y \in \text{im}(f), \exists ! x \in A : y = f(x).$$

Questo definisce la funzione da im(f) in A

ad ogni $y \in \operatorname{im}(f)$ si associa uno e un solo elemento $x \in A$

cioè quell'unico elemento x tale che f(x) = y.

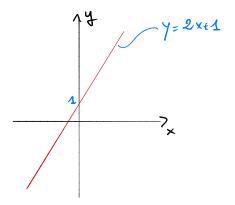
Chiamiamo questa funzione la funzione inversa di f:

$$f^{-1}: \operatorname{im}(f) \to A$$
 che associa

a ogni $y \in B$ l'unico elemento $x \in A$ tale che y = f(x)

Esempi

• $f: \mathbb{R} \to \mathbb{R}$ data da f(x) = 2x + 1 è invertibile, infatti



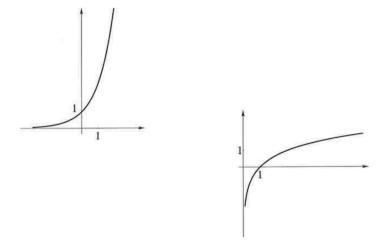
Esempi

▶ $f : \mathbb{R} \to \mathbb{R}$ data da $f(x) = e^x$ è iniettiva, con $\operatorname{im}(f) = \{y \in \mathbb{R} : y > 0\} = (0, +\infty).$

Allora f è invertibile, con $f^{-1}:(0,+\infty)\to\mathbb{R}$ data da

$$f^{-1}(y) = \log y$$
 $\forall y \in (0, +\infty).$

Data
$$f: D_f o \mathbb{R}$$
, **invertibile**, $\operatorname{graf}(f^{-1})$ è il simmetrico di $\operatorname{graf}(f)$ risp. a $y=x$

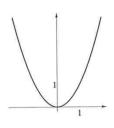


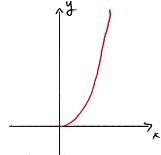
Restrizione

Dati $f: A \rightarrow B$ ed $E \subseteq A$, si dice <u>restrizione</u> di f ad E

$$f|_E: E \to B$$
 data da $f|_E(x) = f(x) \quad \forall x \in E$.

• Esempio: Sia $f: \mathbb{R} \to \{x \in \mathbb{R}: x \ge 0\} = [0, +\infty)$ definita da $f(x) = x^2$





Una funzione che non è iniettiva si può rendere iniettiva semplicemente considerandone opportune restrizioni.

Composizione di funzioni

Siano

$$f: A \to B, \quad g: B' \to C,$$

 $con f(A) \subseteq B'$

si dice composizione di f e g la funzione

$$g \circ f : A \to C$$
 data da $(g \circ f)(x) = g(f(x)) \ \forall x \in A$.

Esempio

Date

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \quad f(x) = |x| \qquad \text{per } x \neq 0$$

$$g:(0,+\infty)\to\mathbb{R}$$
 $g(x)=\log(x)$ per $x>0$

Proprietà della composizione di funzioni

è associativa

$$(h \circ g) \circ f = h \circ (g \circ f)$$

NON è commutativa

$$f \circ g \neq g \circ f$$

▶ inversa della composizione

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

Funzioni inverse e composizione

Sia $f: \operatorname{dom}(f) \to \mathbb{R}$ una funzione iniettiva con

funzione inversa
$$f^{-1}: \operatorname{im}(f) \to \mathbb{R}$$

Valgono le relazioni

$$\forall y \in \operatorname{dom}(f^{-1}) = \operatorname{im}(f) \quad (f \circ f^{-1})(y) = y,$$
$$\forall x \in \operatorname{dom}(f) \quad (f^{-1} \circ f)(x) = x.$$

Per es., con $f(x) = e^x e^{-1}(x) = \ln(x)$ si ha

Operazioni su funzioni

Un modo per generare nuove funzioni a partire da alcune date è utilizzare le operazioni introdotte per i numeri reali.

Date $f: A \to \mathbb{R}$ e $g: A \to \mathbb{R}$,

(a) si dice funzione somma di f e g la funzione

$$f + g : A \to \mathbb{R}, \quad x \mapsto f(x) + g(x)$$

(b) si dice **funzione prodotto** di f e g la funzione

$$fg: A \to \mathbb{R}, \quad x \mapsto f(x)g(x)$$

(c) Supponiamo che $g(x) \neq 0$ per ogni $x \in A$: allora si definisce la **funzione quoziente** di f e g

$$\frac{f}{g}:A\to\mathbb{R}, \qquad \qquad x\mapsto \frac{f(x)}{g(x)}$$

(e) Supponiamo che f(x) > 0 per ogni $x \in A$: la **funzione potenza** di f e g è

$$f^g: A \to \mathbb{R}, \qquad x \mapsto f(x)^{g(x)}.$$