Analisi Matematica I – Scritto del 30.03.2021

Tempo a disposizione: 75 minuti

Esercizio 1. Determinare l'insieme dei numeri complessi z tali che

$$\operatorname{Im}\left(\frac{z-1}{z+i}\right) = 0.$$

[Punteggio: 5 punti]

Esercizio 2. Calcolare il limite

$$\lim_{n \to \infty} \frac{(n+1)^{n+2}}{e^n + n^n} \left(1 - \cos\left(1/n\right) \right)$$

[Punteggio: 5 punti]

Esercizio 3. Calcolare l'integrale

$$\int_0^1 \frac{(\sin^2 x + \sin x - 1)\cos x}{\cos^2 x + 2\sin^2 x} \, dx.$$

[Punteggio: 6 punti]

Esercizio 4. Determinare per quali $\alpha > 0$ converge l'integrale improprio

$$\int_0^\infty \frac{\arctan(x^\alpha)x^{2\alpha}}{x^2 + x^4} \, dx$$

converge. [Punteggio: 5 punti]

Esercizio 5. Calcolare la soluzione del problema di Cauchy

$$y'' + y' = 2x + 1$$

 $y(0) = 1,$
 $y'(0) = 0.$

[Punteggio: 6 punti]

Esercizio 6. Data una successione numerica $\{a_n\}_n \subset \mathbb{R}$, dire se le seguenti affermazioni sono vere o false, giustificando la risposta (se vera, l'affermazione deve essere dimostrata, oppure supportata da un risultato che va citato; se falsa, bisogna esibire un controesempio):

- 1. se $\{a_n\}_n$ è limitata, allora ammette una sottosuccessione convergente;
- 2. se $\lim_{k\to\infty} a_{2k} = L \in \mathbb{R}$, allora $\lim_{n\to\infty} a_n = L$;
- 3. se $\lim_{n\to\infty} a_n = +\infty$, allora $\{a_n\}_n$ non è limitata.

[Punteggio: 3 punti]