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Modeling

Geometrical setting

o 1, Qy: viscoelastic bulk domains, Q =Q; U,
e on ¢, £ and Q, are in adhesive contact. Denote by v unit normal on ¢,
oriented from Q5 to
e 0N =T UTly:
» [ with Dirichlet boundary conditions
» [y with Neumann boundary conditions
e evolution problem in [0, T]
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Modeling

Adhesive contact versus brittle delamination

I

Two different models

» delamination as an inelastic process = brittle delamination models

> elastic response of the adhesive =- adhesive contact models
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Modeling

Outline

» Modeling adhesive contact
» PDE system

> Weak formulation

» Existence results

> Sketch of the proof

» Outlook to delamination
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Modeling

Modeling approaches: fracture mechanics versus damage mechanics

Fracture mechanics approach:

» brittle delamination ~ evolution during [0, T] of a single crack along
prescribed path =T¢

Vte[0,T] Tc= Ta(t) U Tc\la(t)

—— N——
perfect complete
adhesion delamination
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Modeling

Modeling approaches: fracture mechanics versus damage mechanics

Fracture mechanics approach:

» brittle delamination ~ evolution during [0, T] of a single crack along
prescribed path =T¢

Vte[0,T] Tc= Ta(t) U Tc\la(t)

—— N——
perfect complete
adhesion delamination

> irreversibility enforced by dissipation distance

dS ifTa1 Dlao,
D(Ta1,Tap) = { frA,l\rA,z a(x) mhaz . A2
400 otherwise,

a = a(x) > 0 activation energy for delamination: t — [a(t) “decreasing”
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Modeling

Modeling approaches: fracture mechanics versus damage mechanics

Fracture mechanics approach:

» brittle delamination ~ evolution during [0, T] of a single crack along
prescribed path =T¢

Vte[0,T] Tc= Ta(t) U Tc\la(t)

—— N——
perfect complete
adhesion delamination

> irreversibility enforced by dissipation distance

dS ifTa1 Dlao,
D(Ta1,Tap) = { frA,l\rA,z a(x) mhaz . A2
400 otherwise,

a = a(x) > 0 activation energy for delamination: t — [a(t) “decreasing”
» activated, rate-independent phenomenon
See [Dal Maso—Zanini’07, Thomas-Sandig’06, Toader—Zanini’'09, Negri—Ortner’'08,
Cagpnetti’09, Knees—Mielke—Zanini’08,’09..]
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Modeling

Modeling approaches: fracture mechanics versus damage mechanics

Damage mechanics approach
Proposed by [M. Frémond’82,’87]

» delamination/adhesive contact described by a damage variable z

» z ~ volume fraction of debonded molecular links
» evolution of z:
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Modeling

Modeling approaches: fracture mechanics versus damage mechanics

Damage mechanics approach

Proposed by [M. Frémond’82,’87]
» delamination/adhesive contact described by a damage variable z
> z ~ volume fraction of debonded molecular links
> evolution of z:
> either driven by viscous dissipation, isothermal & anisothermal cases:

[Andrews—Shillor-Wright-Klarbring, Bonetti-Bonfanti-R.,
Chau-Fernandez-Shillor-Sofonea, Figuereido-Trabucho, Point,
Raous-Cangémi-Cocou, ....] & monograph on contact with adhesion
[Sofonea-Han-Shillor]
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Modeling

Modeling approaches: fracture mechanics versus damage mechanics

Damage mechanics approach
Proposed by [M. Frémond’82,’87]

» delamination/adhesive contact described by a damage variable z
» z ~ volume fraction of debonded molecular links

> evolution of z:
> either driven by viscous dissipation, isothermal & anisothermal cases:

[Andrews—Shillor-Wright-Klarbring, Bonetti-Bonfanti-R.,
Chau-Fernandez-Shillor-Sofonea, Figuereido-Trabucho, Point,
Raous-Cangémi-Cocou, ....] & monograph on contact with adhesion
[Sofonea-Han-Shillor]

> or rate-independent. Results in the isothermal case:

> adhesive contact problem [Ko&vara—Mielke—Roubitek’06]
> delamination problem [Roubitek—Scardia—Zanini'09]
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Modeling

Modeling approaches: fracture mechanics versus damage mechanics

Damage mechanics approach
Proposed by [M. Frémond’82,’87]

» delamination/adhesive contact described by a damage variable z
» z ~ volume fraction of debonded molecular links

> evolution of z:
> either driven by viscous dissipation, isothermal & anisothermal cases:

[Andrews—Shillor-Wright-Klarbring, Bonetti-Bonfanti-R.,
Chau-Fernandez-Shillor-Sofonea, Figuereido-Trabucho, Point,
Raous-Cangémi-Cocou, ....] & monograph on contact with adhesion
[Sofonea-Han-Shillor]

> or rate-independent. Results in the isothermal case:

> adhesive contact problem [Ko&vara—Mielke—Roubitek’06]
> delamination problem [Roubitek—Scardia—Zanini'09]

{ Approach based on hemivariational inequalities [Panagiotopoulos..]
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Modeling

State variables

> in the volume domain 2:
> displacement u ~» e(u) symm. linear. strain tensor (small strains)
> thermal effects ~~ 6 absolute temperature
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Modeling

State variables

> in the volume domain 2:
> displacement u ~» e(u) symm. linear. strain tensor (small strains)
> thermal effects ~~ 6 absolute temperature

» on the contact surface [¢:
> adhesion variable z ~~ “damage parameter”

On I we also consider

[[u]] = u+|rC — u |rg = the jump of u across c.
——
trace on ¢ trace on ¢
of ug, of ula,

Riccarda Rossi

ndent model for adhesive contact with thermal effects



Modeling

Constraints: irreversibility, unilateral contact..

» Admissible values for z: ~» z € [0,1]
> z(x) =1: at x € I'c adhesive completely sound & fully effective

> 0 < z(x) <1: at x € I'c a fraction of the molecular links is broken

> z(x) =0: at x € I'c surface is completely debonded
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Modeling

Constraints: irreversibility, unilateral contact..

» Admissible values for z: ~» z € [0,1]
> z(x) =1: at x € I'c adhesive completely sound & fully effective

> 0 < z(x) <1: at x € I'c a fraction of the molecular links is broken

> z(x) =0: at x € I'c surface is completely debonded

> @ is the absolute temperature: ~~ 6 > 0
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Modeling

Constraints: irreversibility, unilateral contact..

» Admissible values for z: ~» z € [0,1]
> z(x) =1: at x € I'c adhesive completely sound & fully effective

> 0 < z(x) <1: at x € I'c a fraction of the molecular links is broken

> z(x) =0: at x € I'c surface is completely debonded

> @ is the absolute temperature: ~~ 6 > 0

» Damaging of the glue is a unidirectional process:

z <0 (irreversibility)

Riccarda Rossi

Analysis of a rat dent model for adhesive contact thermal effects



Modeling

Constraints: irreversibility, unilateral contact..

v

Admissible values for z: ~ z € [0, 1]
> z(x) =1: at x € I'c adhesive completely sound & fully effective

> 0 < z(x) <1: at x € I'c a fraction of the molecular links is broken

> z(x) =0: at x € I'c surface is completely debonded

v

0 is the absolute temperature: ~~ 6 >0

» Damaging of the glue is a unidirectional process:

z <0 (irreversibility)

> No interpenetration between 7 and Q,: ~- unilateral contact conditions
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Modeling

Unilateral (frictionless) Signorini contact

I

I

o1
il

229

31

e Signorini conditions in complementarity form:

[ul ‘>0 onTcx(0,T) (no interpenetration) (Sign;)
olrg v-v>0 onlgex(0,T) (Sign,)
~—

traction stress on ¢
olrev-[u] =0 onTex(0,T) (Sign;)
olrev-t=0 onTcx (0, T) Vtst.v-t=0 (Sign,)

(Sign,) & (Sign;) & (Sign,) yield
> [u] -v>0 = of|rov =0 (no reaction)
> [u] -v=0 = o|rov = Av, XA > 0 (reaction is triggered)
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Modeling

Equation for u
Momentum equilibrium equation

ou —div(c)=F inQx(0,T).
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Modeling

Equation for u
Momentum equilibrium equation

ou —div(c)=F inQx(0,T).

Ansatz of generalized standard solids:
> inertial effects

Riccarda Rossi

ndent model for adhesive contact with thermal effects



Modeling

Equation for u
Momentum equilibrium equation

oti — div(De(u) + C(e(u)—Ef)) = F in Qx (0, T). (eq,)

Ansatz of generalized standard solids:
> inertial effects
> stress o features viscous response of material (Kelvin-Voigt rheology)

o= De(u) +C(e(u)—Ef)
——

viscosity

C, D A4th-order positive definite and symmetric tensors
E matrix of thermal expansion coefficients

Riccarda Rossi

Analysis of a rat dent model for adhesive contact thermal effects



Modeling

Equation for u
Momentum equilibrium equation
ot — div(De(t) + C(e(u)—Ef)) = F in Qx (0, T). (eq,)

Ansatz of generalized standard solids:
> inertial effects
> stress o features viscous response of material (Kelvin-Voigt rheology)

o= De(u) +C(e(u)—Ef)
——

viscosity

C, D A4th-order positive definite and symmetric tensors
E matrix of thermal expansion coefficients

» F applied bulk force
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Modeling

Equation for u
Momentum equilibrium equation

ot — div(De(t) + C(e(u)—Ef)) = F in Qx (0, T). (eq,)

Ansatz of generalized standard solids:
> inertial effects
> stress o features viscous response of material (Kelvin-Voigt rheology)

o= De(u) +C(e(u)—Ef)
—
viscosity

C, D A4th-order positive definite and symmetric tensors
E matrix of thermal expansion coefficients

» F applied bulk force
+ boundary conditions on 9Q2 = I'p U I'x:

u=0 onlpx(0,T)
on=f onlyx(0,T)
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Modeling

Equation for u
Momentum equilibrium equation

ot — div(De(t) + C(e(u)—Ef)) = F in Qx (0, T). (eq,)

Ansatz of generalized standard solids:
> inertial effects
> stress o features viscous response of material (Kelvin-Voigt rheology)
o= De(u) +C(e(u)—Ef)
——

viscosity

C, D A4th-order positive definite and symmetric tensors
E matrix of thermal expansion coefficients

» F applied bulk force
+ boundary conditions on 9Q2 = I'p U I'x:
u=0 onlpx(0,T)
on=f onlxx(0,T)
+ complementarity problem on 'c encompassing adhesion variable z in
Signorini contact
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Modeling

Equation for 0

Heat equation
cv(0)0 + div(j) = De(t): e(th) + OCE: e(i) + G in Q x (0, T)

It balances heat flux & rate of heat production due to dissipation:
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Modeling

Equation for 0

Heat equation
cv(0)0 + div(j) = De(t): e(th) + OCE: e(i) + G in Q x (0, T)

It balances heat flux & rate of heat production due to dissipation:

> c¢.(0) heat capacity
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Modeling

Equation for 0

Heat equation

co(0)0+div(—K(e(u),0)V) = De(a): e(u)+0CE: e(i)+G in Qx (0, T) (eqq)
It balances heat flux & rate of heat production due to dissipation:
> c¢.(0) heat capacity

> j heat flux, given by Fourier’'s law in an anisotropic medium

j = ~K(e(u),0)V9,

K(e(u),8) pos. def. matrix heat conduction coefficients

Riccarda Rossi

Analysis of a rate-independent model for adhesive contact with thermal effects



Modeling

Equation for 0

Heat equation

()0 — div(K(e(u), 0)V) = De(u): e(i) + 6CE: e(i) + G in 2 x (0, T) (eqy)
It balances heat flux & rate of heat production due to dissipation:
> c¢.(0) heat capacity

> j heat flux, given by Fourier’'s law in an anisotropic medium

j = ~K(e(u),0)V9,

K(e(u),8) pos. def. matrix heat conduction coefficients

» De(u): e(u) viscous dissipation potential in the bulk
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Modeling

Equation for 0

Heat equation

()0 — div(K(e(u), 0)V) = De(u): e(u) + 6CE: e(i) + G in Q x (0, T) (eqy)
It balances heat flux & rate of heat production due to dissipation:
> c¢.(0) heat capacity

> j heat flux, given by Fourier’'s law in an anisotropic medium

j = ~K(e(u),0)V9,

K(e(u),8) pos. def. matrix heat conduction coefficients

» De(u): e(u) viscous dissipation potential in the bulk

» G external heat source
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Modeling

Equation for 0
Heat equation

CV(G)é — div(K(e(u),0)V6) = De(u): e(t) +0CE: e(u)+ G in Q2x (0, T). (eqy)
+ Neumann boundary conditions on 9Q:

K(e(u),0)VO-n=g on 902 x (0, T), g external heat source
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Modeling

Equation for 0
Heat equation

c(0)8 — div(K(e(u),0)V6) = De(n): e(t) +6CE: e(u) + G in Q2 x (0, T). (eqy)
+ Neumann boundary conditions on 9Q:
K(e(u),0)VO-n=g on 902 x (0, T), g external heat source

+ conditions ¢ featuring dissipation rate on ¢

(K(e(u),9)v9|#c+]1<(e(u),9)v9|;c)-y+n([[u]],z) [6] =0 onTex(0,T), (T1)

N =

[K(e(u),0)VO] -v=((z) onTcx(0,T) (T2)
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Modeling

Equation for 0
Heat equation

c(0)8 — div(K(e(u),0)V6) = De(n): e(t) +6CE: e(u) + G in Q2 x (0, T). (eqy)
+ Neumann boundary conditions on 9Q:
K(e(u),0)VO-n=g on 902 x (0, T), g external heat source

+ conditions ¢ featuring dissipation rate on ¢

(K(e(u),9)v9|#c+]1<(e(u),9)v9|;c)-y+n([[u]],z) [6] =0 onTex(0,T), (T1)

N =

[K(e(u),0)VO] -v=((z) onTcx(0,T) (T2)

» (T1): transient condition on I'c with

1([u]l, z) heat transfer coefficient ~~ heat convection
[6] jump of temperature across I'c

» (T2) balances normal jump of heat flux j = —KV6 with dissipation rate
C(Z‘) on r(;
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Modeling

(Frictionless) unilateral contact in the adhesive case

e Complementarity problem with ‘ o = De(u) + C(e(u)—E0) | and z
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Modeling

(Frictionless) unilateral contact in the adhesive case

e Complementarity problem with ‘ o = De(u) + C(e(u)—E0) | and z

[u] -»>0 onTcx(0,T) (no interpenetration) (Sign,)
(orev+rz[u])-v>0 onTex(0,T) (Sign3®™)
(olrev + rz[u]) - [u] =0 on e x (0,T) (Sign3™)

(olrev + rz[u]) - t=0 onTe x (0,T) Vst v-t=0 (Signj®)
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Modeling

(Frictionless) unilateral contact in the adhesive case

e Complementarity problem with ‘ o = De(u) + C(e(u)—E0) | and z

[u] -»>0 onTcx(0,T) (no interpenetration) (Sign,)
(orev+rz[u])-v>0 onTex(0,T) (Sign3®™)
(olrev + rz[u]) - [u] =0 on e x (0,T) (Sign3™)

(olrev + rz[u]) - t=0 onTe x (0,T) Vst v-t=0 (Signz®™)
When z = 0 (Sign3®") & (Sign3®™) & (Sign;®") reduce to Signorini conditions
» [u] -v >0 = o|r v =0 (no reaction)

> [u] -v=0 = o|rov = Av, A > 0 (reaction is triggered)
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Modeling

(Frictionless) unilateral contact in the adhesive case

e Complementarity problem with ‘ o = De(u) + C(e(u)—E0) | and z

[u] -»>0 onTcx(0,T) (no interpenetration) (Sign,)
(orev+rz[u])-v>0 onTex(0,T) (Sign3®™)
(olrev + rz[u]) - [u] =0 on e x (0,T) (Sign3™)

(olrev + rz[u]) - t=0 onTe x (0,T) Vst v-t=0 (Signj®)
When z > 0 (adhesion active) (Sign3®") & (Sign3®") & (Sign}*") yield
olrqv = Av — Kz[[u] v, A>0

even for A = 0 there's a reaction ~ kz[u] counteracting separation ~- this is

the ‘ elastic response of the adhesive‘
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Modeling

(Frictionless) unilateral contact in the adhesive case

e Complementarity problem with ‘ o = De(u) + C(e(u)—E0) | and z

[u] -»>0 onTcx(0,T) (no interpenetration) (Sign,)
(olrev + rz[u]) v >0 onTcx(0,T) (Sign3®™)
(olrev + rz[u]) - [u] =0 on e x (0,T) (Sign3™)

(olrev + rz[u]) - t=0 onTe x (0,T) Vst v-t=0 (Signj®)

Equivalently formulated as differential inclusion
olrav + /«:z[[u] —|—8Ic([[u]]) 30 onlex(0,T), with

C=C(x)={veR?: v-y(x) >0} foraaxclc

and Olc convex analysis subdifferential of the indicator function /.
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Modeling

General contact conditions on I,
Signorini contact can be replaced by
olrev + kz[u] +8le([u]) 20 onTecx (0, T)

with
C =C(x) closed cone fora.a.x€eTl¢.

Examples
> (Signorini) unilateral contact, no interpenetration
C=C(x)={veR? v.y(x) >0} foraa xelc
» tangential slip along '
C=C(x)={veR’ v.y(x)=0} foraa.xelc

> very simplified model: C = C(x) linear subspace of R?
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Modeling

Equation for z

Flow rule for z
8C(2) + Ahoy(2) + Lx|[u] | =20 20 onTex(0,T) (eq,)

It's a balance law between dissipation and stored energy
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Modeling

Equation for z

Flow rule for z

8C(2) + Ahoy(2) + Lx|[u] | =20 20 onTex(0,T) (eq,)

It's a balance law between dissipation and stored energy
» ((z) dissipation potential on I'c, enforces irreversibility
> lo1y(z) ~ constraint z € [0, 1]
» Lk|[u]|* ~ elastic response of the adhesive

» a9 (phenomenological specific) stored energy by disintegrating the
adhesive.
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Modeling

Rate-dependent vs. rate-independent evolution for z

8¢(2) + Oloy(z) + Lk|[u] | —a0 20 onTcx(0,T) (eq,)
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Modeling

Rate-dependent vs. rate-independent evolution for z
8¢(2) + Oloy(z) + Lk|[u] | —a0 20 onTcx(0,T) (eq,)

Viscous models
¢ = ¢(2) has superlinear growth at infinity. In particular,

(2) = %|z'|2 4 lcoon(2)  (gradient flow case)
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Modeling

Rate-dependent vs. rate-independent evolution for z
8¢(2) + Oloy(z) + Lk|[u] | —a0 20 onTcx(0,T) (eq,)

Viscous models
¢ = ¢(2) has superlinear growth at infinity. In particular,

(2) = %|z'|2 4 lcoon(2)  (gradient flow case)

Rate-independent models, our choice
¢ = ¢(2) has linear growth at infinity: 1-positively homogeneous

C(Av) = AC(v) VA>0

In particular,
¢(2) = a1|z| + f(—0,0(2)

with a; (phenomenological specific) dissipated energy by disintegrating the
adhesive.
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Modeling

Rate-dependent vs. rate-independent evolution for z

O o0)(2) — a1+ Ol y(2) + 2x|[u] | —2020 onTex(0,T) (eq,)
Viscous models

¢ = ¢(2) has superlinear growth at infinity. In particular,

(2) = %|z'|2 4 lcoon(2)  (gradient flow case)

Rate-independent models, our choice
¢ = ¢(2) has linear growth at infinity: 1-positively homogeneous

C(Av) = AC(v) VA>0

In particular,
¢(2) = a1|z| + f(—0,0(2)

with a; (phenomenological specific) dissipated energy by disintegrating the
adhesive.
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PDE system: mathematical difficulties

Rate-independent evolutions

8C¢(2) + Oloy(z) + Lx|[u] | —a0 20 onTex(0,T) (eq,)
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PDE system: mathematical difficulties

Rate-independent evolutions

8C¢(2) + Oloy(z) + Lx|[u] | —a0 20 onTex(0,T) (eq,)

Features

> invariance under time-rescaling:
¢ is 1-homogeneous = 0( is 0-homogeneous

Hence z is solution of (eq,) if and only if z o « is solution of (eq,) for
every strictly increasing reparametrization «.

» Typical of activated systems: z responds to the activation energy in a
rate-independent way possibly with hysteresis effects
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PDE system: mathematical difficulties

Rate-independent evolutions
8C¢(2) + Oloy(z) + Lx|[u] | —a0 20 onTex(0,T) (eq,)

Mathematical difficulties

» ( does NOT grow superlinearly at co ~~ no “good” estimates for z
standard regularity of t — z(t) is ONLY BV

» z may have jumps!!! ~s weak formulations
y Jump
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PDE system: mathematical difficulties

Rate-independent evolutions
8C¢(2) + Oloy(z) + Lx|[u] | —a0 20 onTex(0,T) (eq,)

Mathematical difficulties

» ( does NOT grow superlinearly at co ~~ no “good” estimates for z
standard regularity of t — z(t) is ONLY BV

» z may have jumps!!! ~s weak formulations
y Jump

Theory of energetic solutions [Mielke et al.]
Weak, derivative-free formulations, based on

» energetic balance (energy identity)

» stability conditions

» enforcing irreversibility
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PDE system: mathematical difficulties

The complete PDE system: viscous vs. rate-independent behaviour

ot — div(De(d) 4+ C(e(u)—Ef)) = F in Q2 x(0,T),
+ Dir. b.c. onT'p x (0, T) + Neu. b.c. on 'y x (0, T),
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PDE system: mathematical difficulties

The complete PDE system: viscous vs. rate-independent behaviour

ot — div(De(u) + C(e(u)-E0)) = F in Qx(0,7),
+ Dir. b.c. onT'p x (0, T) + Neu. b.c. on 'y x (0, T),
. (0)0 — div(K(e(u),0)V0) = De(u): e(i) + 6CE: e(u) + G in Qx (0, T),

+ Neu. b.c. on 9Q x (0, T),
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PDE system: mathematical difficulties

The complete PDE system: viscous vs. rate-independent behaviour

ot — div(De(d) 4+ C(e(u)—Ef)) = F in Q x (0, T),
+ Dir. b.c. on Tp x (0, T) 4+ Neu. b.c. on I'n x (0, T),
. (0)0 — div(K(e(u),0)V0) = De(u): e(i) + 6CE: e(u) + G in Qx (0, T),
+ Neu. b.c. on 902 x (0, T),
[De(w) + (Ce(u)—EH)]v =0 on ¢ x (0, T),
(De(u) + (Ce(u)—E0))|re v+ rz[u] +0lc([u]) >0 onTe x(0,T),
a\rc
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PDE system: mathematical difficulties

The complete PDE system: viscous vs. rate-independent behaviour

ot — div(De(u) + C(e(u)-E0)) = F in Qx(0,7),

+ Dir. b.c. onT'p x (0, T) + Neu. b.c. on 'y x (0, T),

. (0)0 — div(K(e(u),0)V0) = De(u): e(i) + 6CE: e(u) + G in Qx (0, T),

+ Neu. b.c. on 902 x (0, T),

[De(w) + (Ce(u)—EH)]v =0 on ¢ x (0, T),
(De(u) + (Ce(u)—E0))|re v+ rz[u] +0lc([u]) >0 on ¢ x (0, T),

o‘\rc
8¢(2) + Bl y(z) + Lx|[u] " —a0 2 0 on e x (0, T),

Riccarda Rossi

Analysis of a rate-independent model for adhesive contact with thermal effects



PDE system: mathematical difficulties

The complete PDE system: viscous vs. rate-independent behaviour

ot — div(De(u) + C(e(u)-E0)) = F in Qx(0,7),

+ Dir. b.c. onT'p x (0, T) + Neu. b.c. on 'y x (0, T),

. (0)0 — div(K(e(u),0)V0) = De(u): e(i) + 6CE: e(u) + G in Qx (0, T),

+ Neu. b.c. on 902 x (0, T),

[De(w) + (Ce(u)—EH)]v =0 on ¢ x (0, T),
(De(u) + (Ce(u)—E0))|re v+ rz[u] +0lc([u]) >0 on ¢ x (0, T),

o‘\rc
8¢(2) + Bl y(z) + Lx|[u] " —a0 2 0 on e x (0, T),

1(]K(e(u),e)veﬁC +K(e(u),0)VOlr.) -v+n([u],2)[6] =0 onTcx(0,T),
[K(e(u),0)V0O] - v =¢(2) onlcx(0,7).
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PDE system: mathematical difficulties

The complete PDE system: viscous vs. rate-independent behaviour

ot — div(De(d) 4+ C(e(u)—Ef)) = F in Q x (0, T),

+ Dir. b.c. onT'p x (0, T) + Neu. b.c. on 'y x (0, T),

. (0)0 — div(K(e(u),0)V0) = De(u): e(i) + 6CE: e(u) + G in Qx (0, T),

+ Neu. b.c. on 902 x (0, T),

[De(w) + (Ce(u)—EH)]v =0 on ¢ x (0, T),
(De(u) + (Ce(u)—E0))|re v+ rz[u] +0lc([u]) >0 onle x(0,T),

alrg

8¢(2) + Bl y(z) + Lx|[u] " —a0 2 0 on e x (0, T),

1(]K(e(u),e)veﬁC +K(e(u),0)VOlr.) -v+n([u],2)[6] =0 onTcx(0,T),

[K(e(u),0)V0O] - v =¢(2) onlcx(0,7).

Not fully rate-independent model: viscosity-driven equations for u and %
coupled with rate-independent evolution for z.
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PDE system: mathematical difficulties

The complete PDE system: viscous vs. rate-independent behaviour

ot — div(De(u) + C(e(u)-E0)) = F in Qx(0,7),
+ Dir. b.c. onT'p x (0, T) + Neu. b.c. on 'y x (0, T),
. (0)0 — div(K(e(u),0)V0) = De(u): e(i) + 6CE: e(u) + G in Qx (0, T),

+ Neu. b.c. on 902 x (0, T),

[De(w) + (Ce(u)—EH)]v =0 on ¢ x (0, T),

(De(u) + (Ce(u)—EO))|r, v+ rz[u] +dlc([u]) >0 on e x (0, T),
alrg

8¢(2) + Bl y(z) + Lx|[u] " —a0 2 0 on e x (0, T),

1(]K(e(u),e)veﬁC +K(e(u),0)VOlr.) -v+n([u],2)[6] =0 onTcx(0,T),

[K(e(u),0)V0O] - v =¢(2) onlcx(0,7).

Not fully rate-independent model: viscosity-driven equations for u and %
coupled with rate-independent evolution for z. General theory for
rate-independent evolutions coupled with viscous evolutions: .[Roubitek’09,’10]

Riccarda Rossi

endent model for adhesive contact with thermal effects
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PDE system: mathematical difficulties

Mathematical difficulties (1)

ot — div(De(u) + C(e(u)-E0)) = F inQx(0,T),
+ Dir. b.c. on Tp x (0, T) 4+ Neu. b.c. on I'n x (0, T),

ce(0)0 — div(K(e(u),0)V6) = De(u): e(i) + 6CE: e(i) + G in Q x (0, T),
+ Neu. b.c. on 90 x (0, T),

[De(t) + (Ce(u)—EH)]v =0 on ¢ x (0, T),
(De(u) + (Ce(u)—E0))|rev + rz[u] + 0l ([u] ) 50 on ¢ x(0,T),
9C(2) + Ol y(2) + 1x|[u] " —a0 20 on e x (0, T),

1(]K(e(u),@)veﬁ—'c + K(e(u),@)Vtﬂr_C) cv+n([u],2)[0]] =0 onTc x(0,T),
[K(e(u),0)Vo] - v = ((2) on g x (0, T).

¢ (quadratic) coupling terms between (eq,) and (eqy) ~+ only [*-estimates
for r.h.s. of (eqy)

Riccarda Rossi
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PDE system: mathematical difficulties

Enthalpy reformulation

Only L! estimates for the r.h.s. of
. (0)0 — div(K(e(u),0)V8) = De(u): e(u) + 6CE: e(i) + G in 2 x (0, T)
= Boccardo-Gallouét techniques + suitable growth conditions on ¢y, e.g.

(@ +1)"° < (0) < a(d+ 1)
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PDE system: mathematical difficulties

Enthalpy reformulation
Only L! estimates for the r.h.s. of
. (0)0 — div(K(e(u),0)V8) = De(u): e(u) + 6CE: e(i) + G in 2 x (0, T)
= Boccardo-Gallouét techniques + suitable growth conditions on ¢y, e.g.
(@ +1)"° < (0) < a(d+ 1)

To combine this with time-discretization, enthalpy re-formulation

{ w=w(0) = [ c(r)dr,
0 =0(w)
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PDE system: mathematical difficulties

Enthalpy reformulation
Only L! estimates for the r.h.s. of
. (0)0 — div(K(e(u),0)V8) = De(u): e(u) + 6CE: e(i) + G in 2 x (0, T)
= Boccardo-Gallouét techniques + suitable growth conditions on ¢y, e.g.
(@ +1)"° < (0) < a(d+ 1)

To combine this with time-discretization, enthalpy re-formulation

{ w=w(0) = [ c(r)dr,
0 =0(w)

hence
w—div(K(e(u), w)Vw) = De(u): e(4)+O(w)CE: e(u)+G in Qx(0,T) (eq,,)

with
Co(wh“r —1) < O(w) < CGZ(w"*0 — 1)
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PDE system: mathematical difficulties

Mathematical difficulties (1)

ot — div(De(a) + C(e(u)—EO(w))) = F Qx (0,7),
+ Dir. b.c. on Ty x (0, T) + Neu. b.c. on 'y x (0, T),

w — div(K(e(u), w)Vw) = De(a): e(u) + ©(w)CE: e(u) + G Qx(0,T),
+ Neu. b.c. on 92 x (0, T),

[De(u) + (Ce(u)—EO(w))]v =0 Fe x(0,7),
(De(t) + (Ce(u)—EO(w)))|rev + kz[u] + dle([u]) 20 Fe x (0, T),
AC(2) + Oloy(2) + 2x[[u]|” — a0 30 e x (0, T),
2 (K(ew), w) VWl + K(e(w), w)Vwlr, )+ n([u] ) [O(w)] =0 Tex (0,T),
[K(e(u), w)Vw] -v =¢(2) e x(0,T)
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PDE system: mathematical difficulties

Mathematical difficulties (1)

ot — div(De(d) + C(e(u)—EO(w))) = F Qx (0,7),
+ Dir. b.c. on Ty x (0, T) + Neu. b.c. on 'y x (0, T),

w — div(K(e(u), w)Vw) = De(a): e(u) + ©(w)CE: e(u) + G Qx(0,7)
+ Neu. b.c. on 92 x (0, T),

[De(u) + (Ce(u)-EQ(w))]v =0 Fe x (0, 7),
(De(u) + (Ce(u)—EO(w)))|rev + £z [u] + dlc([u]) 50 Fe x (0, T),
AC(2) + Ao,y (2) + 1| [u] P — a0 > 0 Mo x (0, T),
2 (K(ew), w)Vwlf, + K(e(w), w)Vwlr, )+ n([u] ,2)[O(w)] =0 Tex (0,T),

[[lC(e(u)7 W)VW]] v ={_(2) e x(0,T)

{ coupling terms between (eq,), (eq,,) and (eq,) involve traces of u and w
on M ~ need of sufficient regularity of u and w to control u|r, and w|r,

Riccarda Rossi
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PDE system: mathematical difficulties

Mathematical difficulties (111)

ot — div(De(d) + C(e(u)—EO(w))) = F Qx(0,7),
+ Dir. b.c. on Ty x (0, T) + Neu. b.c. on 'y x (0, T),

w — div(K(e(u), w)Vw) = De(a): e(u) + ©(w)CE: e(u) + G Qx(0,T),
+ Neu. b.c. on 92 x (0, T),

[De(u) + (Ce(u)-EOQ(w))]v =0 Fe x (0, T),
(De(t) + (Ce(u)—EO(w)))|rev + wz[u] + dle([u]) 50 Fe x (0, T),
8¢(2) + Bloy(z) + Lx|[u] |© —a0 2 0 e % (0,7),
%(IC(e(u), W)Vl + K(e(u), w)Vwlr,)v + n([u] , 2)[€(w)] =0 T x (0, T),
[K(e(u), w)Vw] v =¢(2) Fex(0,T)

{ rate-independent evolution for z ~ lack of regularity of t — z(t), z may
have jumps, z need not be well-defined!

Riccarda Rossi
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Weak formulation

Weak formulation of the equation for z (1)
9C(2) + Al y(2) + Lx|[u] | —a0 20
Weak, derivative-free formulation ~~ semi-stability condition:
Vz e L™(Te) : ®(u(t),z(t)) < d(u(t),2) +R(2—2(t)) fora.a.t€(0,T) (S)
with

» dissipation potential

z—z|dS ifz< e inTlg,
R(E*Z) = ((2—2z)dS = /rcal‘z z| ifz<zae inl¢

F'c +00 otherwise.

> stored energy functional

®(u,z) == /Q %(Ce(u): e(u) dx+lc([u] )+/ (gz| [u] |2 + loyy(2) — aoz) ds

F'c
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Weak formulation

Weak formulation of the equation for z (1)

9C(2) + Al y(2) + Lx|[u] | —a0 20

Weak, derivative-free formulation ~~ semi-stability condition:
Vz e L™(Te) : ®(u(t),z(t)) < d(u(t),2) +R(2—2(t)) fora.a.t€(0,T) (S)

with
» dissipation potential
ai|z—z|dS ifz<zae inlg,
R(z-z):= [ ((3-2)dS = /rc 1l2-2[dS ifZ<zae inlo

F'c +00 otherwise.

> stored energy functional

®(u,z) == /Q %(Ce(u): e(u) dx+lc([u] )+/ (gz| [u] |2 + loyy(2) — aoz) ds

F'c

Remark: (S) only a semi-stability condition (u(t) is fixed)! This reflects the
fact that PDE system NOT FULLY RATE-INDEPENDENT, u has
viscosity-driven evolution!
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Weak formulation

Weak formulation of the equation for z (Il)

)+ Oloy(z) + ik|[u]|"—a 20 onTex(0,T) (eq,)

= 9,%(u, z)

implies

Vze L®(Te): ®(u(t),z(t)) < ®(u(t),z) +R(2—2z(t)) foraa.te(0,T) (S)

Riccarda Rossi

Analysis of a rate-independent model for adhesive contact with thermal effects



Weak formulation

Weak formulation of the equation for z (Il)

Proof:
e use that 9¢(z) C 9¢(0) (1-homogeneity of ()
o fix Z € L*°(I'c) and test

_ (allo,u(z(t)) + e[ [u®)] [ - ao) € 8C(2(t)) € AC(0) by z — z(t)

— —0,(u(t), 2(1))
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Weak formulation

Weak formulation of the equation for z (Il)

Proof:
e use that 9¢(z) C 9¢(0) (1-homogeneity of ()
o fix Z € L*°(I'c) and test

_ (allo,u(z(t)) + e[ [u®)] [ - ao) € 8C(2(t)) € AC(0) by z — z(t)

— —0,(u(t), 2(1))

e Hence
C(2—z(t)) - C(0) = (—0:®(u,2(t)), 2 — z(t))
K¢ Fc
= R(3-2(t)) =0
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Weak formulation

Weak formulation of the equation for z (Il)

Proof:
e use that 9¢(z) C 9¢(0) (1-homogeneity of ()
o fix Z € L*°(I'c) and test

_ (allo,u(z(t)) + e[ [u®)] [ - ao) € 8C(2(t)) € AC(0) by z — z(t)

— —0,(u(t), 2(1))

e Hence
C(2—z(t)) - C(0) = (—0:®(u,2(t)), 2 — z(t))
K¢ Fc
= R(3-2(t)) =0

®(u,-) convex

®(u(t), (1)) — ®(u(t), 2)
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Weak formulation

Weak formulation of the equation for z (Il)

Proof:
e use that 9¢(z) C 9¢(0) (1-homogeneity of ()
o fix Z € L*°(I'c) and test

_ (allo,u(z(t)) + e[ [u®)] [ - ao) € 8C(2(t)) € AC(0) by z — z(t)

— —0,(u(t), 2(1))

e Hence
C(2—z(t)) - C(0) = (—0:®(u,2(t)), 2 — z(t))
K¢ Fc
= R(3-2(t)) =0

®(u,-) convex .
®(u(t), (1)) — ®(u(t), 2)
Remark: if t — z(t) absolutely continuous (no jumps):
semi-stability condition (S) (4 energy identity) = (eq,)
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Weak formulation

Weak formulation of the equation for u

From
ou — div(De(u) + C(e(u)-E©(w))) = F in Q2 x (0, T),
+ Dir. b.c. onTp x (0, T) + Neu. b.c. on 'y x (0, T),
[De(a) + (Ce(u)—EO(w))]vr =0 onTex(0,T),

(De(u) + (Ce(u)—EO(w)))|rev + rz[u] + 0l ([u]) 0 on e x (0, T),
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Weak formulation

Weak formulation of the equation for u

From
ou — div(De(u) + C(e(u)-E©(w))) = F in Q2 x (0, T),
+ Dir. b.c. onTp x (0, T) + Neu. b.c. on 'y x (0, T),
[De(a) + (Ce(u)—EO(w))]vr =0 onTex(0,T),

(De(u) + (Ce(u)—EO(w)))|rev + rz[u] + 0l ([u]) 0 on e x (0, T),
to
[u]l €C onTc x(0,T),

Riccarda Rossi

Analysis of a rate- endent model for adhesive contact with thermal effects



Weak formulation

Weak formulation of the equation for u

From
ou — div(De(u) + C(e(u)-E©(w))) = F in Q2 x (0, T),
+ Dir. b.c. onTp x (0, T) + Neu. b.c. on 'y x (0, T),
[De(a) + (Ce(u)—EO(w))]vr =0 onTex(0,T),

(De(u) + (Ce(u)—EO(w)))|rev + rz[u] + 0l ([u]) 0 on e x (0, T),
to
[u]l €C onTc x(0,T),
o [ a(T): (u(T)-i(T)) dx

+/OT/Q(De(d)+C(e(u)—E@(w)); e(v — u) dxdt

_/OT/QQa. (\'I—ﬁ)dde—/OT/rC wz[u] - [v—u] dSdt
> Q/Q.jo-(v(O)—u(O))der/oT/QF.(v—u)dxdt+/0T/rN £ (v—u)dSdt

for all test func. vs.t. v=0on Ip x (0, T) and [v] € C.on I'e x (0, T)
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Weak formulation

Weak formulation of the enthalpy equation
From
w — div(K(e(u), W)VW) = De(u): e(u) + O(w)B: e(u) + G Qx (0, T),
—|—Neu b.c. on 99 x (0,
3 (K(e(u), ) Vwlf, +’C(e(U) w)Vwlr ) +n([u], 2)[©(w)] =0 e x (0,
|[K(e(u) w)Vw] - v =((2) e x (0,
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Weak formulation

Weak formulation of the enthalpy equation
From

w — div(K(e(u), W)VW) = De(u): e(u) + O(w)B: e(u) + G Qx (0, T),
—|—Neu b.c. on 99 x (0,

3 (K(e(u), w)Vwl{, +’C(e(u) w)Vwlr )+ n([ul, 2)[®(w)] =0 Tec x (0,
|[K(e(u) w)Vw] - v =((2) e x (0,

to
/QW(T)V(T)dx—F/OT/QIC(e(u),W)VW-Vv— wv dxdt
+ / ' / n([u], 2)[O(w)] [v] dSdt
/ / (De(i): e(6) + O(w)C: Ee(u)) vdxdt—/ /rv| o¥lre ¢ (asa)

+/ /Gvdxdt+/ / gvdet+/ wov(0) dx
o Jo o Joa Q

for all test functions v,
with h, measure induced by dissipation ¢
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Weak formulation

Weak formulation of the adhesive contact PDE system
Find a triple (u, z, w) with

ue W0, T; erlf(Q;]Rd)) N Whe(0, T; L2(; RY)),
ze L™(Te x (0,T)) nBV([0, T]; L'(Tc)),
w e L'(0, T; W™ (Q\Fe)) N L0, T; L1(Q)) N BV([0, T]; W™ (Q\T)?)

d+2
V1§r<m,
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Weak formulation

Weak formulation of the adhesive contact PDE system
Find a triple (u, z, w) with
u € WH(0, T; WA RY)) N Wh(0, T; (4 RY)),
z€ L™(Te x (0, T)) N BV([0, T]; L*(Tc)),
w e L'(0, T; WY (Q\Te)) N L0, T; L1(Q)) N BV([0, T]; W (Q\le)*)

d+2 s
V1< r< g, fulfilling

» semi-stability

» weak formulation of the momentum equation

» weak formulation of the enthalpy equation
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Weak formulation

Weak formulation of the adhesive contact PDE system
Find a triple (u, z, w) with
u € WH(0, T; WA RY)) N Wh(0, T; (4 RY)),
z€ L™(Te x (0, T)) N BV([0, T]; L*(Tc)),
w e L'(0, T; WY (Q\Te)) N L0, T; L1(Q)) N BV([0, T]; W (Q\le)*)

d+2 s
V1< r< g, fulfilling

» semi-stability
weak formulation of the momentum equation
weak formulation of the enthalpy equation

total energy inequality

%/Qg|l](T)|2dx+¢(u(T),z(T))+/W(T)dx

Q

<5 [ ol dx+ 0(u(0).2(0)) + [ w(0)dx

/ /Fudxdt+/ / udet—i—/ /dedt+/ / gdSdt
aa

v

v

\4
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Analysis and existence results

Existence theorem (1)

Under
conditions on the data ¢, K, n +

conditions on the initial data (uo, to, 2o, wo)
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Analysis and existence results

Existence theorem (1)
Under
conditions on the data ¢, K, n +
conditions on the initial data (uo, to, 2o, wo)

0=0and C=C(x) general closed cone in R’
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Analysis and existence results

Existence theorem (1)

Under
conditions on the data ¢, K, n +

conditions on the initial data (uo, to, 2o, wo)
if
0=0and C=C(x) general closed cone in R’
then the Cauchy problem for the weak formulation
» semi-stability
» weak formulation of the momentum equation
» weak formulation of the enthalpy equation

» total energy inequality

< (u(0), z(0)) +/QW(0)dX+/OT/QF-l'1dth

T T T
+/ / f~ﬁd5dt+/ /dedt—i—/ / gdSdt
0o Jry o Ja o Joq
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Analysis and existence results

Existence theorem (1)
Under
conditions on the data ¢, K, n +
conditions on the initial data (uo, to, 2o, wo)
if
0=0and C=C(x) general closed cone in R’

then the Cauchy problem for the weak formulation ‘ has a solution (u, w, z). ‘
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Analysis and existence results

Existence theorem (I1)

Under
conditions on the data ¢, K, n +

conditions on the initial data (uo, to, 2o, wo)
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Analysis and existence results

Existence theorem (I1)

Under
conditions on the data ¢, K, n +

conditions on the initial data (uo, to, 2o, wo)

0>0and C=C(x) linear subspace in R’

Riccarda Rossi

Analysis of a rat dent model for adhe: h thermal effects



Analysis and existence results

Existence theorem (I1)

Under
conditions on the data ¢, K, n +

conditions on the initial data (uo, to, 2o, wo)
if
0>0and C=C(x) linear subspace in R’
then the Cauchy problem for the weak formulation
» semi-stability
» weak formulation of the momentum equation
» weak formulation of the enthalpy equation

» total energy inequality
%/ﬂgm(r)\?dx+¢(u(T),z(T))+/Qw(T)dx
g%[zg|u(0)|2dx+¢(u(0),z(0)) +/QW(0)dx

T T T T
+/ /F-ﬁdxdt—i—/ / f-L'ldet—i—/ /dedt+/ / gdSdt
o Ja 0o Jry o Ja o Joa
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Analysis and existence results

Existence theorem (I1)
Under
conditions on the data ¢, K, n +
conditions on the initial data (uo, to, 2o, wo)
if
0>0and C=C(x) linear subspace in R’

then the Cauchy problem for the weak formulation ‘ has a solution (u, w, z). ‘
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Analysis and existence results

Outline of the proof (1)

{ Approximation via e-Yosida regularization of the constraint

(De(t) + (Ce(u)—EO(w)))|rev + rz[u] + dle([u]) 30 on e x (0, T)

replaced by
(De(u) + (Ce(u)—EO(w)))|rev + rz[u] + (9lc)-([u]) 20 on Fe x (0, T).

Riccarda Rossi

Analysis of a rate- endent model for adhesive contact with thermal effects



Analysis and existence results

Outline of the proof (1)

{ Approximation via e-Yosida regularization of the constraint

(De(t) + (Ce(u)—EO(w)))|rev + rz[u] + dle([u]) 30 on e x (0, T)

replaced by
(De(u) + (Ce(u)—EO(w)))|rev + rz[u] + (9lc)-([u]) 20 on Fe x (0, T).

Penalization
In the case of (frictionless) Signorini contact

C=C(x)={veR’ v-u(x) >0} foraaxerlo

then | (0lc)-([u]) = —2([u] - v) v ‘ hence approximation reduces to

penalization

(De(u) + (Ce(u)—EO(w)))|rev + k2 [u] —%([u}] v) v>30 onlTex(0,7)
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Analysis and existence results

Outline of the proof (Il)
{ Approximation of the ¢-Yosida regularized problem via semi-implicit time
discretization:

7 > 0 time-step ~» partition {tr=0<t1 <... <t <...<tk, =T}

Time-discrete problem: find {(uf,, wk., z¥, )}k 1 fulfilling

oD?uk | — div(De(Deuk ) + C(e(uk ) —2O(WE, ) + rle(wh )| T 2e(uh 1)) = FE inQ,
+ Dir. b.c. on Ty + Neu. b.c. on Ty

Dewk . — div(K(w,,, ewk ) vwk ) (- V7 )De(Deuk ): e(Deuk ) + 0w )E: Ce(Deuf ) + 6K inQ,
+ Neu. b.c. on 89,

0¢(Dezl ) + dlg () + g[[ugf]] 2otk 50 on e,
[PeD k) + Cle(ul ) —OWE B + 7le(uk )7 " 2e(wk )] v = 0 onTe,

2k [l ]+ (@l0)e ([uE, 1) + [Pe(Druf ) + Cle(ul ) —OWE ) + 7]eul )T el )] v

u onlc,
3 k 2y5 —1p k
+ P [ T 2 T et ] =0
1
k k k k k k | —
e N A R B I e PRI CCR) enfc,
[RwE ek ) Twk Tv = —c(Dezk ) onlc.
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Analysis and existence results

Outline of the proof (I1)

{ A priori estimates
{ Passage to the limitas 7 | 0
{> Passage to the limit as | 0

= Existence of a solution to the weak formulation
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Analysis and existence results

Outline of the proof (I1)

{ A priori estimates

{ Passage to the limitas 7 | 0

{> Passage to the limit as | 0

= Existence of a solution to the weak formulation
formally shown on the PDE system

ot — div(De(u) + C(e(u)—EO(w))) = F in Q x (0, T),
+ Dir. b.c. onTp X (0, T) + Neu. b.c. on 'y x (0, T),

w — div(K(e(u), w)Vw) = De(u): e(i) + O(w)CE: e(a) + G inQx(0,T)
+ Neu. b.c. on 9Q x (0, T),

[De(u) + (Ce(u)—ES(w))]v =0 on ¢ x(0,T),
(De(u) + (Ce(u)—EO(w)))|r v + kz[u] +lc([u]) 30 onTl¢c x (0, T),
8C(2) + Bl 1y(2) + 1| [u] > —a0 3 0 on I'c x (0, T),

%(K(e(u), wW)Vwlit + K(e(u), w)Vwir,)-v+ n([ul . 2) [O(w)] =0 on Fo x (0, ),
[K(e(u), w)Vw] v =¢(2) onlcx(0,T)
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Analysis and existence results

Outline of the proof (I1)

{ A priori estimates
{> Passage to the limit
= Existence of a solution to the weak formulation

formally shown on the PDE system

ot — div(De(u) + C(e(u)—EO(w))) = F in Q x (0, T),
+ Dir. b.c. onTp X (0, T) + Neu. b.c. on 'y x (0, T),

w — div(K(e(u), w)Vw) = De(u): e(i) + O(w)CE: e(a) + G inQx(0,T)
+ Neu. b.c. on 9Q x (0, T),

[De(u) + (Ce(u)—ES(w))]v =0 on ¢ x(0,T),
(De(u) + (Ce(u)—EO(w)))|r v + kz[u] +lc([u]) 30 onTl¢c x (0, T),

8C(2) + Ol ) (2) + 2| [u] |* — a0 > 0 on Fe x (0, T),

%(K(e(u), wW)Vwlit + K(e(u), w)Vwir,)-v+ n([ul . 2) [O(w)] =0 on Fo x (0, ),

[K(e(u), w)Vw] v =¢(2) onlcx(0,T)
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Analysis and existence results

Basic a priori estimates (1)

First estimate
ot — div(De(d) 4+ C(e(u)—EOQ(w))) = F xu
w — div(K(e(u), w)Vw) = De(a): e(t) + ©(w)CE: e(t) + G x1
8¢(2) + Bloy(2z) + Lx|[u] | —a0 20 xz

total energy balance:

+ -
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Analysis and existence results

Basic a priori estimates (1)

First estimate
ot — div(De(d) 4+ C(e(u)—EOQ(w))) = F xu
+  w—div(K(e(u), w)Vw) = De(u): e(d) + O(w)CE: e(u) + G x1
+ 8¢(2) + Bloy(2z) + Lx|[u] | —a0 20 xz

= total energy balance:

%/.Q|L](T)|2dx+<l>(u(T),z(T))—|—/QW(T)dx

;/g|u(0)| dx + & (u(0), 2(0)) + / w(0) dx

/ /Fudxdt+/ fudet+/ /dedt+/ / gdSsde
N o9
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Analysis and existence results

Basic a priori estimates (1)

First estimate
ot — div(De(d) 4+ C(e(u)—EOQ(w))) = F xu
+  w—div(K(e(u), w)Vw) = De(u): e(d) + O(w)CE: e(u) + G x1
+ 8¢(2) + Bloy(2z) + Lx|[u] | —a0 20 xz

= total energy balance:

%/.Q|L](T)|2dx+<l>(u(T),z(T))—|—/QW(T)dx

;/g|u(0)| dx + & (u(0), 2(0)) + / w(0) dx

/ /Fudxdt+/ fudet+/ /dedt+/ / gdSsde
N o9

= “Energy” a-priori estimates on u, w, z
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Analysis and existence results

Basic a priori estimates (Il)

> Boccardo-Gallouét estimates on the enthalpy equation & interpolation
= bounds for Vw

» w estimated by comparison in the enthalpy equation
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Analysis and existence results

Basic a priori estimates (Il)

> Boccardo-Gallouét estimates on the enthalpy equation & interpolation
= bounds for Vw

» w estimated by comparison in the enthalpy equation

» By comparison in the momentum equilibrium equation

ATAgﬁv+/OT/rca/c([u])v

= inertial term and subdifferential term CANNOT be estimated
separately. Hence we distinguish cases

< C for all test functions v

’g:O&generaIC‘ vs. ‘,Q>O&IinearC
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Analysis and existence results

Basic a priori estimates (Il)

> Boccardo-Gallouét estimates on the enthalpy equation & interpolation
= bounds for Vw

» w estimated by comparison in the enthalpy equation

» By comparison in the momentum equilibrium equation

ATAgﬁv+/OT/rca/c([u])v

= inertial term and subdifferential term CANNOT be estimated
separately. Hence we distinguish cases

< C for all test functions v

’g:O&generaIC‘ vs. ‘,Q>O&IinearC‘

Compactness theorems: strongly/weakly converging (sub)sequences of
approx. solutions (Un, Wa, zy) — (u, w, 2)
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Analysis and existence results

Passage to the limit: step (1)

Momentum equation & Semi-stability condition & Total energy
inequality

» By strong-weak convergences we deduce that (u, w, z) fulfils weak
momentum equation.
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Analysis and existence results

Passage to the limit: step (1)

Momentum equation & Semi-stability condition & Total energy
inequality

» By strong-weak convergences we deduce that (u, w, z) fulfils weak
momentum equation.
» Arguing by
> lower semicontinuity
> recovery sequence trick

we obtain that (u, w, z) fulfils semi-stability condition.
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Analysis and existence results

Passage to the limit: step (1)

Momentum equation & Semi-stability condition & Total energy
inequality
» By strong-weak convergences we deduce that (u, w, z) fulfils weak
momentum equation.
> Arguing by

> lower semicontinuity
> recovery sequence trick

we obtain that (u, w, z) fulfils semi-stability condition.

> Lower semicontinuity argument = total energy inequality.
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Analysis and existence results

Passage to the limit: step (I1)

Enthalpy equation
{ To pass to the limit in

wn — div(K(e(un), wa)Vw,) = De(uyn): e(up) + ©(wa)CE: e(u,) + G Q,
+ Neu. b.c. on 09,

3 (K(e(un), wa) Vwal £+ K(e(un), wn) Vwalr ) v + n([unl, z)[O(wa)] =0 Tc,

[K(e(un), wn)Vwn] - v = ((zn) Fe
we need

De(un): e(u,) — De(u): e(u) in L*(0, T; L*Y(Q))

¢(zn) — b, (measure induced by dissipation ) in the sense of measures
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Analysis and existence results

Passage to the limit: step (I1)

Enthalpy equation
{ To pass to the limit in

wn — div(K(e(un), wa)Vw,) = De(uyn): e(up) + ©(wa)CE: e(u,) + G Q,
+ Neu. b.c. on 09,

3 (K(e(un), wa) Vwal £+ K(e(un), wn) Vwalr ) v + n([unl, z)[O(wa)] =0 Tc,

[K(e(un), wn)Vwn] - v = ((zn) Fe
we need

De(un): e(u,) — De(u): e(u) in L*(0, T; L*Y(Q))

¢(zn) — b, (measure induced by dissipation ) in the sense of measures

{ Technical trick: from an additional energy equality deduce convergences
for {De(u,): e(us)} and {{(z,)} via a liminf /limsup argument..
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Analysis and existence results

Passage to the limit: step (I1)

Enthalpy equation
{ To pass to the limit in

wn — div(K(e(un), wa)Vw,) = De(uyn): e(up) + ©(wa)CE: e(u,) + G Q,
+ Neu. b.c. on 09,
L(K(e(un), wn) Vwal,, + K(e(un), W) Vwaly,.) v+ n(lunl. ) [O(wn)] =0 Te,

[K(e(un), wn)Vwn] - v = ((zn) Fe
we need

De(un): e(u,) — De(u): e(u) in L*(0, T; L*Y(Q))

¢(zn) — b, (measure induced by dissipation ) in the sense of measures

{ Technical trick: from an additional energy equality deduce convergences
for {De(u,): e(us)} and {{(z,)} via a liminf /limsup argument..

= Conclusion of the proof of existence!

Riccarda Rossi

Analysis of a rate-independent model for adhesive contact with thermal effects



Analysis and existence results

Passage to the limit: step (I1)

Enthalpy equation
{ To pass to the limit in

wn — div(K(e(un), wa)Vw,) = De(uyn): e(up) + ©(wa)CE: e(u,) + G Q,
+ Neu. b.c. on 09,
L(K(e(un), wn) Vwal,, + K(e(un), W) Vwaly,.) v+ n(lunl. ) [O(wn)] =0 Te,

[K(e(un), wn)Vwn] - v = ((zn) Fe
we need

De(un): e(u,) — De(u): e(u) in L*(0, T; L*Y(Q))

¢(zn) — b, (measure induced by dissipation ) in the sense of measures

{ Technical trick: from an additional energy equality deduce convergences
for {De(u,): e(us)} and {{(z,)} via a liminf /limsup argument..
= Conclusion of the proof of existence!
{> Uniqueness not expected due to
» nonlinear character of PDE system
> rate-independent character of equation for z
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Open problem

Modeling and analysis of delamination & thermal effects
i.e., anisothermal extension of [Roubitek—Scardia—Zanini’09]
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Open problem

Modeling and analysis of delamination & thermal effects
i.e., anisothermal extension of [Roubitek—Scardia—Zanini’09]

Delamination model: letting x — +o0 in
(De(a) + (Ce(u)—EO(W)))|rev + rz[u] +dle([u]) 20 onTe x (0, T),
8¢(2) + Bloy(z) + Lx|[u] | —a0 30 on e x (0, T).
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Open problem

Modeling and analysis of delamination & thermal effects
i.e., anisothermal extension of [Roubitek—Scardia—Zanini’09]

Delamination model: letting x — +o0 in

(De(a) + (Ce(u)—EO(W)))|rev + rz[u] +dle([u]) 20 onTe x (0, T),

8¢(2) + Bloy(z) + Lx|[u] | —a0 30 on e x (0, T).
Hence

(De(u) + (Ce(u)—EO(w)))|rev + +0lc([u]) 20 onTex(0,T),

z[[u] =0 onlqx(0,T),

aC(Z) + 61[0,1](2) + 0Zl{z[u]]70}( [u]] ) —a >0 on ¢ x (07 T)
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Open problem

Modeling and analysis of delamination & thermal effects
i.e., anisothermal extension of [Roubitek—Scardia—Zanini’09]

Delamination model: letting x — +o0 in

(De(a) + (Ce(u)—EO(W)))|rev + rz[u] +dle([u]) 20 onTe x (0, T),

8¢(2) + Bloy(z) + Lx|[u] | —a0 30 on e x (0, T).
Hence

(De(u) + (Ce(u)—EO(w)))|rev + +0lc([u]) 20 onTex(0,T),

z[[u] =0 onlqx(0,T),

aC(Z) + 61[0,1](2) + 0Zl{z[u]]70}( [u]] ) —a >0 on ¢ x (07 T)

Main difficulties:
> two nonsmooth operators ‘ Olo,1(2) + Ozl zpu1=oy ([ul) ‘ in equation for z

> (z,[u]) = I{zpuj=0 (2, [u]) is NONCONVEX
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Open problem

Modeling and analysis of delamination & thermal effects
i.e., anisothermal extension of [Roubitek—Scardia—Zanini’09]

Delamination model: letting x — +o0 in

(De(a) + (Ce(u)—EO(W)))|rev + rz[u] +dle([u]) 20 onTe x (0, T),

8¢(2) + Bloy(z) + Lx|[u] | —a0 30 on e x (0, T).
Hence

(De(u) + (Ce(u)—EO(w)))|rev + +0lc([u]) 20 onTex(0,T),

z[[u] =0 onlqx(0,T),

aC(Z) + 61[0,1](2) + 0Zl{z[u]]70}( [u]] ) —a >0 on ¢ x (07 T)

Main difficulties:
> two nonsmooth operators ‘ Olo,1(2) + Ozl zpu1=oy ([ul) ‘ in equation for z
> (z,[u]) = lzu)=03(z, [u]) is NONCONVEX

How to pass to the limit in approximate problem??777?

Work with an even weaker formulation of PDE system?777
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