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Abstract. Several mechanical systems are modeled by the static momentum balance for the
displacement u coupled with a rate-independent flow rule for some internal variable z. We
consider a class of abstract systems of ODEs which have the same structure, albeit in a finite-
dimensional setting, and regularize both the static equation and the rate-independent flow rule
by adding viscous dissipation terms with coefficients εα and ε, where 0 < ε� 1 and α > 0 is a
fixed parameter. Therefore for α 6= 1 u and z have different relaxation rates.

We address the vanishing-viscosity analysis as ε ↓ 0 of the viscous system. We prove that,
up to a subsequence, (reparameterized) viscous solutions converge to a parameterized curve
yielding a Balanced Viscosity solution to the original rate-independent system, and providing
an accurate description of the system behavior at jumps. We also give a reformulation of the
notion of Balanced Viscosity solution in terms of a system of subdifferential inclusions, showing
that the viscosity in u and the one in z are involved in the jump dynamics in different ways,
according to whether α > 1, α = 1, and α ∈ (0, 1).

1. Introduction
Several mechanical systems are described by ODE or PDE systems of the type:

DuE(t, u(t), z(t)) = 0 in U∗, for a.a. t ∈ (0, T ), (1.1a)

∂R0(z
′(t)) + DzE(t, u(t), z(t)) 3 0 in Z∗, for a.a. t ∈ (0, T ), (1.1b)

where U, Z are Banach spaces, and E : [0, T ]×U×Z→ R is an energy functional. For example,
within the ansatz of generalized standard materials, u is the displacement, at equilibrium, while
changes in the elastic behavior due to dissipative effects are described in terms of an internal
variable z in some state space Z. In several mechanical phenomena [1], dissipation due to inertia
and viscosity is negligible, and the system is governed by rate-independent evolution, which
means that the (convex, nondegenerate) dissipation potential R0 : Z → [0,∞) is positively
homogeneous of degree 1. Thus system (1.1) is invariant for time-rescalings.

It is well known that, if the map z 7→ E(t, u, z) is not uniformly convex, one cannot expect the
existence of absolutely continuous solutions to (1.1). This fact has motivated the development of
various weak solvability concepts for (1.1), starting with the well-established notion of energetic
solution. The latter dates back to [2] and was further developed in [3] (see [4], as well, in the
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context of crack growth), cf. also [1], [5] and the references therein. Despite the several good
features of the energetic formulation, it is known that, in the case the energy z 7→ E(t, u, z) is
nonconvex, the global stability condition may lead to jumps of z as a function of time that are
not motivated by, or in accord with, the mechanics of the system, cf. e.g. the discussions in [6,
Ex. 6.1], [7, Ex. 6.3], and [8, Ex. 1].

Over the last years, an alternative selection criterion of mechanically feasible weak solution
concepts for the rate-independent system (1.1) has been developed, moving from the finite-
dimensional analysis in [9]. It is based on the interpretation of (1.1) as originating in the
vanishing-viscosity limit of the viscous system

DuE(t, u(t), z(t)) = 0 in U∗, for a.a. t ∈ (0, T ), (1.2a)

∂R0(z
′(t)) + ε∂Vz(z

′(t)) + DzE(t, u(t), z(t)) 3 0 in Z∗, for a.a. t ∈ (0, T ), (1.2b)

where Vz : Z→ [0,∞) is a dissipation potential with superlinear (for instance, quadratic) growth
at infinity. Observe that the existence of solutions for the generalized gradient system (1.2)
follows from [10, 11], cf. also [12]. This vanishing-viscosity approach leads to a notion of solution
featuring a local, rather than global, stability condition for the description of rate-independent
evolution, thus avoiding “too early” and “too long” jumps. Furthermore, it provides an accurate
description of the energetic behavior of the system at jumps, in particular highlighting how
viscosity, neglected in the limit as ε ↓ 0, comes back into the picture and governs the jump
dynamics. This has been demonstrated in [8, 13, 14] within the frame of abstract, finite-
dimensional and infinite-dimensional, rate-independent systems, and in [15] for a wide class
parabolic equations with a rate-independent term. This analysis has also been developed in
several applicative contexts, ranging from crack propagation [7, 16], to plasticity [17, 18, 19, 20],
and to damage [21], among others.

In this note, we shall perform the vanishing-viscosity analysis of system (1.1) by considering
the viscous approximation of (1.1a), in addition to the viscous approximation of (1.1b). More
precisely, we will address the asymptotic analysis as ε ↓ 0 of the system

εα∂Vu(u′(t)) + DuE(t, u(t), z(t)) = 0 in U∗, for a.a. t ∈ (0, T ), (1.3a)

∂R0(z
′(t)) + ε∂Vz(z

′(t)) + DzE(t, u(t), z(t)) 3 0 in Z∗, for a.a. t ∈ (0, T ), (1.3b)

where α > 0 and Vu a quadratic dissipation potential for the variable u. Observe that (1.3)
models systems with (possibly) very different relaxation times. In fact, the parameter α > 0 sets
which of the two variables u and z relaxes faster to equilibrium and rate-independent evolution,
respectively.

Let us mention that the analysis developed in this paper is in the mainstream of a series
of recent papers focused on the coupling between rate-independent and viscous systems. First
and foremost, in [22] a wide class of rate-independent processes in viscous solids with inertia
has been tackled, while the coupling with temperature has further been considered in [23]. In
fact, in these systems the evolution for the internal variable z is purely rate-independent and
no vanishing viscosity is added to the equation for z: viscosity and inertia only intervene in
the evolution for the displacement u. For these processes, the author has proposed a notion
of solution of energetic type consisting of the weakly formulated momentum equation for the
displacements (and also of the weak heat equation in [23]), of an energy balance, and of a semi-
stability condition. The latter reflects the mixed rate dependent/independent character of the
system. In [22] and [24] a vanishing-viscosity analysis (in the momentum equation) has been
performed. As discussed in [24] in the context of delamination, this approach leads to local
solutions (cf. also [5]), describing crack initiation (i.e., delamination) in a physically feasible
way. In [25], the vanishing-viscosity approach has also been developed in the context of a
model for crack growth in the two-dimensional antiplane case, with a pre-assigned crack path,
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coupling a viscoelastic momentum equation with a viscous flow rule for the crack tip; again, this
procedure leads to solutions jumping later than energetic solutions. With a rescaling technique,
a vanishing-viscosity analysis both in the flow rule, and in the momentum equation, has been
recently performed in [26] for perfect plasticity, recovering energetic solutions thanks to the
convexity of the energy. In [27], the same analysis has led to local solutions for a delamination
system.

With the vanishing-viscosity analysis in this paper, besides finding good local conditions
for the limit evolution, we want to add as an additional feature a thorough description of the
energetic behavior of the solutions at jumps. This shall be deduced from an energy balance.
Moreover, in comparison to the aforementioned contributions [25, 26, 27] a greater emphasis
shall be put here on how the multi-rate character of system (1.3) enters in the description of the
jump dynamics. In particular, we will convey that viscosity in u and viscosity z are involved in
the path followed by the system at jumps in (possibly) different ways, depending on whether
the parameter α is strictly bigger than, or equal to, or strictly smaller than 1.

To focus on this and to avoid overburdening the paper with technicalities, we shall keep to a
simple functional analytic setting. Namely, we shall consider the finite-dimensional and smooth
case

U = Rn, Z = Rm, E ∈ C1([0, T ]× Rn × Rm) . (1.4)

Obviously, this considerably simplifies the analysis, since the difficulties attached to
nonsmoothness of the energy and to infinite-dimensionality are completely avoided. Still, even
within such a simple setting (where, however, we will allow for state-dependent dissipation
potentials R0, Vz, and Vu), the key ideas of our vanishing-viscosity approach can be highlighted.

Let us briefly summarize our results by restricting to a simplified version of (1.3), where we
assume (1.4) and use the simple choices

Vu(u′) =
1

2
|u′|2, Vz(z

′) =
1

2
|z′|2

(cf. (Vu) for the assumptions on state-dependent dissipation potentials), system (1.3) reduces
to the ODE system

εαu′(t) + DuE(t, u(t), z(t)) = 0 in (0, T ), (1.5a)

∂R0(z
′(t)) + εz′(t) + DzE(t, u(t), z(t)) 3 0 in (0, T ). (1.5b)

First of all, following [8, 13, 14], and along the lines of the variational approach to gradient
flows by E. De Giorgi [28, 29], we will pass to the limit as ε ↓ 0 in the energy-dissipation
principle associated (and equivalent, by Fenchel-Moreau duality and the chain rule for E) to
(1.5), namely

E(t, u(t), z(t)) +

∫ t

s
R0(z

′(r)) +
ε

2
|z′(r)|2 +

εα

2
|u′(r)|2 dr

+

∫ t

s

1

ε
W∗z(−DzE(r, u(r), z(r))) +

1

2εα
|−DuE(r, u(r), z(r))|2 dr

= E(s, u(s), z(s)) +

∫ t

s
∂tE(r, u(r), z(r)) dr

(1.6)

for all 0 ≤ s ≤ t ≤ T , where W∗z is the Legendre transform of R0 +Vz. As we will see in Section
4, equation (1.6) is well-suited to unveiling the role played by viscosity in the description of
the energetic behavior of the system at jumps. Indeed, it reflects the competition between the
tendency of the system to be governed by viscous dissipation both for the variable z and for
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the variable u (with different rates if α 6= 1), and its tendency to be locally stable in z, and at
equilibrium in u, cf. also the discussion in Remark 4.4.

Secondly, to develop the analysis as ε ↓ 0 for a family of curves (uε, zε)ε ⊂W1,2(0, T ;Rn×Rm)
fulfilling (1.6) we will adopt a by now well-established technique from [9]. Namely, to capture
the viscous transition paths at jump points, we will reparameterize the curves (uε, zε), for
instance by their arc-length. Hence we will address the analysis as ε ↓ 0 of the parameterized
curves (tε, uε, zε)ε defined on the interval [0, S] with values in the extended phase space
[0, T ] × Rn × Rm, with tε the rescaling functions and uε := uε ◦ tε, zε := zε ◦ tε. Under
suitable conditions it can be proved that, up to a subsequence the curves (tε, uε, zε)ε converge
to a triple (t, u, z) ∈ W1,1([0, S]; [0, T ] × Rn × Rm). Its evolution is described by an energy-
dissipation principle obtained by passing to the limit in the reparameterized version of (1.6),
cf. Theorem 4.5. We will refer to (t, u, z) as a parameterized Balanced Viscosity solution to the
rate-independent system (Rn × Rm,E,R0 + εVz + εαVu).

The main result of this paper, Theorem 5.3, provides a more transparent reformulation of
the energy-dissipation principle defining a parameterized Balanced Viscosity solution (t, u, z). It
is in terms of a system of subdifferential inclusions fulfilled by the curve (t, u, z), namely

θu(s)u′(s) + (1−θu(s))DuE(t(s), u(s), z(s)) 3 0 for a.a. s ∈ (0, S),

(1−θz(s))∂R0(z
′(s)) + θz(s)z

′(s) + (1−θz(s))DzE(t(s), u(s), z(s)) 3 0 for a.a. s ∈ (0, S),
(1.7)

where the Borel functions θu, θz : [0, S]→ [0, 1] fulfill

t′(s)θu(s) = t′(s)θz(s) = 0 for a.a. s ∈ (0, S), (1.8)

plus an extra condition on the triple (t′, θu, θz) that depends explicitly on the three cases
α ∈ (0, 1), α = 1, and α > 1, see (5.13). Condition (1.8) reveals that the viscous terms
u′(s) and z′(s) may contribute to (1.7) only at jumps of the system, corresponding to t′(s) = 0
as the function t records the (slow) external time scale. In this respect, (1.7)–(1.8) is akin to
the (parameterized) subdifferential inclusion

DuE(t(s), u(s), z(s)) 3 0 for a.a. s ∈ (0, S),

∂R0(z
′(s)) + θ(s)z′(s) + DzE(t(s), u(s), z(s)) 3 0 for a.a. s ∈ (0, S),

(1.9)

with the Borel function θ : [0, S]→ [0,∞) fulfilling

t′(s)θ(s) = 0 for a.a. s ∈ (0, S). (1.10)

Indeed, (1.9) is the subdifferential reformulation for parameterized Balanced Viscosity solutions
obtained by taking the limit ε ↓ 0 in (1.2), where viscosity is added only to the flow rule.

However, note that (1.7) has a much more complex structure than (1.9). In addition to the
switching condition (1.8), the functions t′, θu, and θz fulfill the additional condition (5.13) that
differs in the three cases α > 1, α = 1, and α ∈ (0, 1). In particular, for θu > 0 or θz > 0
the viscosity in u or z pops back into the description of the system behavior at jumps, in a
way depending on whether u relaxes faster to equilibrium than z, or u and z have the same
relaxation rate, or z relaxes faster to local stability than u. This explains the reason for the name
(parameterized) Balanced Viscosity solutions, see also Definition 4.6. While this limiting system
is rate-independent, it still shows a subtle balance between the different dissipative mechanisms,
namely the rate-independent one given via R0 and the viscous ones given via Vu and Vz.
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Plan of the paper. In Section 2 we set up all the basic assumptions on the dissipation
potentials R0, Vu, and Vz. Section 3 is devoted to the generalized gradient system driven by
E and the “viscous” potential Rε := R0 + εVz + εαVu. In particular, we establish a series of
estimates on the viscous solutions (uε, zε) which will be at the core of the vanishing-viscosity
analysis, developed in Section 4 with Theorem 4.5. In Section 5 we will prove Theorem 5.3 and
explore the mechanical interpretation of parameterized Balanced Viscosity solutions. Finally, in
Section 6 we will illustrate this solution notion, focusing on how it varies in the cases α > 1,
α = 1, α ∈ (0, 1), in two different examples.

Notation. In what follows, we will denote by 〈·, ·〉 and by | · | the scalar product and the norm
in any Euclidean space Rd, with d = n, m, n + m, . . .. Moreover, we will use the same symbol
C to denote a positive constant depending on data, and possibly varying from line to line.

2. Setup
As mentioned in the introduction, we are going to address a more general version of system (1.5),
where the 1-positively homogeneous dissipation potential R0, as well as the quadratic potentials
Vu and Vz for u′ and z′, are also depending on the state variable

q := (u, z) ∈ Q := Rn × Rm.

Hence, the rate-independent system is

∂q′R0(q(t), z
′(t)) + DqE(t, q(t)) 3 0 in (0, T ), (2.1)

namely

DuE(t, u(t), z(t)) = 0 for a.a. t ∈ (0, T ), (2.2a)

∂R0(q(t), z
′(t)) + DzE(t, u(t), z(t)) 3 0 for a.a. t ∈ (0, T ). (2.2b)

We approximate it with the following generalized gradient system

∂q′Rε(q(t), q
′(t)) + DqE(t, q(t)) 3 0 in (0, T ), (2.3)

where the overall dissipation potential Rε is of the form

Rε(q, q
′) = Rε(q, (u

′, z′)) := R0(q, z
′) + εVz(q; z

′) + εαVu(q;u′) with α > 0. (2.4)

In what follows, let us specify our assumptions on the dissipation potentials R0, Vz, and Vu.

Dissipation: We require that

R0 ∈ C0(Q× Rm), ∀ q ∈ Q : R0(q, ·) is convex, positively 1-homogeneous, and

∃C0,R, C1,R > 0 ∀ (q, z′) ∈ Q× Rm : C0,R|z′| ≤ R0(q, z
′) ≤ C1,R|z′|,

(R0)

Vz : Q× Rm → [0,∞) is of the form Vz(q; z
′) =

1

2
〈Vz(q)z

′, z′〉 with

Vz ∈ C0(Q;Rm×m) and ∃C0,V , C1,V > 0 ∀ q ∈ Q : C0,V |z′|2 ≤ Vz(q; z
′) ≤ C1,V |z′|2,

(Vz)

Vu : Q× Rn → [0,∞) is of the form Vu(q;u′) =
1

2
〈Vu(q)u′, u′〉 with

Vu ∈ C0(Q;Rn×n) and ∃ C̃0,V , C̃1,V > 0 ∀ q ∈ Q : C̃0,V |u′|2 ≤ Vu(q;u′) ≤ C̃1,V |u′|2.
(Vu)
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For later use, let us recall that, due to the 1-homogeneity of R0(q, ·), for every q ∈ Q the
convex analysis subdifferential ∂R0(q, ·) : Rm ⇒ Rm is characterized by

ζ ∈ ∂R0(q, z
′) if and only if

{
〈ζ, w〉 ≤ R0(q, w) for all w ∈ Rm,
〈ζ, z′〉 ≥ R0(q, z

′) .
(2.5)

Furthermore, observe that (Vz) and (Vu) ensure that for every q ∈ Q the matrices Vz(q) ∈ Rn×n
and Vu(q) ∈ Rm×m are positive definite, uniformly with respect to q. Furthermore, for later use
we remark that the conjugate

V∗u(q; η) = sup
v∈Rn

(〈η, v〉 − Vu(q; v)〉) =
1

2
〈Vu(q)−1η, η〉

fulfills
C0|η|2 ≤ V∗u(q; η) ≤ C1|η|2 (2.6)

for some C0, C1 > 0. We have the analogous coercivity and growth properties for V∗z .
Our assumptions concerning the energy functional E, expounded below, are typical of the

variational approach to gradient flows and generalized gradient systems. Since we are in a
finite-dimensional setting, to impose coercivity it is sufficient to ask for boundedness of energy
sublevels. The power-control condition will allow us to bound ∂tE in the derivation of the basic
energy estimate on system (2.3), cf. Lemma 3.1 later on. The smoothness of E guarantees the
validity of two further, key properties, i.e. the continuity of DqE, and the chain rule (cf. (2.10)
below), which will play a crucial role for our analysis.

Later on, in Section 3, we will impose that E is uniformly convex with respect to u. As we
will see, this condition will be at the core of the proof of an estimate for ‖u′‖L1(0,T ;Rn), uniform
with respect to the parameter ε. Observe that, unlike for z′ such estimate does not follow from
the basic energy estimate on system (2.3), since the overall dissipation potential Rε is degenerate
in u′ as ε ↓ 0. It will require additional careful calculations.

Energy: We assume that E ∈ C1([0, T ] × Q) and that it is bounded from below by a positive
constant (indeed by adding a constant we can always reduce to this case). Furthermore, we
require that

∃C0,E , C̃0,E > 0 ∀ (t, q) ∈ [0, T ]× Q : E(t, q) ≥ C0,E |q|2 − C̃0,E (coercivity),

∃C1,E > 0 ∀ (t, q) ∈ [0, T ]× Q : |∂tE(t, q)| ≤ C1,EE(t, q) (power control).
(E)

In view of (2.4), (Vz), and (Vu), the generalized gradient system (2.3) reads

εαVu(q(t))u′(t) + DuE(t, u(t), z(t)) = 0 in (0, T ), (2.7a)

εVz(q(t))z
′(t) + ∂R0(z

′(t)) + DzE(t, u(t), z(t)) = 0 in (0, T ). (2.7b)

Existence of solutions to the generalized gradient system (2.3). It follows from the
results in [10, 12] that, under the present assumptions, for every ε > 0 there exists a solution
qε ∈ W1,2(0, T ;Q) to the Cauchy problem for (2.3). Observe that qε also fulfills the energy-
dissipation principle

E(t, qε(t)) +

∫ t

s
Rε(qε(r), q

′
ε(r)) +R∗ε(qε(r),−DqE(r, qε(r))) dr = E(s, qε(s)) +

∫ t

s
∂tE(r, qε(r)) dr.

(2.8)
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In (2.8), the dual dissipation potential R∗ε : Q× Rn+m → R is the Fenchel-Moreau conjugate of
Rε, i.e.

R∗ε(q, ξ) := sup
v∈Q

(〈ξ, v〉 − Rε(q, v)) . (2.9)

In fact, by the Fenchel equivalence the differential inclusion (2.3) reformulates as

Rε(qε(t), q
′
ε(t)) + R∗ε(qε(t),−DqE(t, qε(t))) = 〈−DqE(t, qε(t)), q

′
ε(t)〉 for a.a. t ∈ (0, T ).

Combining this with the chain rule

d

dt
E(t, q(t)) = ∂tE(t, q(t)) + 〈DqE(t, q(t)), q′(t)〉 for a.a. t ∈ (0, T ) (2.10)

along any curve q ∈W1,1([0, T ];Q) and integrating in time, we conclude (2.8).
The energy balance (2.8) will play a crucial role in our analysis: indeed, after deriving in Sec.

3 a series of a priori estimates, uniform with respect to the parameter ε > 0, we shall pass to
the limit in the parameterized version of (2.8) as ε ↓ 0. We will thus obtain a (parameterized)
energy-dissipation principle which encodes information on the behavior of the limit system for
ε = 0, in particular at the jumps of the limit curve q of the solutions qε to (2.3).

3. A priori estimates
In this section, we consider a family (qε)ε ⊂ W1,2(0, T ;Q) of solutions to the Cauchy problem
for (2.3), with a converging sequence of initial data (q0ε)ε, i.e.

q0ε → q0 (3.1)

for some q0 ∈ Q. Our first result, Lemma 3.1, provides a series of basic estimates on the functions
(qε), as well as a bound for ‖z′ε‖L1(0,T ;Rm), uniform with respect to ε. It holds under conditions
(R0), (Vz), (Vu), (E), as well as (3.1).

Imposing that the dissipation potential Vu does not depend on the state variable (cf. (Vu,1)
below), assuming uniform convexity of E with respect to the variable u, and requiring an
additional condition the initial data (q0ε)ε (see (3.5)), in Proposition 3.2 we will derive the
following crucial estimate, uniform with respect to ε:

‖q′ε‖L1(0,T ;Rn+m) ≤ C. (3.2)

We begin with the following result, which does not require the above mentioned enhanced
conditions.

Lemma 3.1. Let α > 0. Assume (R0), (Vz), (Vu), (E), and (3.1). Then, there exists a constant
C > 0 such that for every ε > 0

sup
t∈[0,T ]

E(t, qε(t)) ≤ C, (3.3a)

sup
t∈[0,T ]

|qε(t)| ≤ C, (3.3b)∫ T

0
|z′ε(r)|dr ≤ C. (3.3c)

Proof. We exploit the energy identity (2.8). Observe that R∗ε(q, ξ) ≥ 0 for all (q, ξ) ∈ Q×Rn+m.
Therefore, we deduce from (2.8) that

E(t, qε(t)) ≤ E(0, qε(0)) +

∫ t

0
∂tE(r, qε(r)) dr ≤ C + C1,E

∫ t

0
E(r, qε(r)) dr,
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where we have used the power control from (E) and the fact that E(0, qε(0)) ≤ C, since the
(qε(0))ε is bounded. The Gronwall lemma then yields (3.3a), and (3.3b) ensues from the
coercivity of E. Using again the power control, we ultimately infer from (2.8) that∫ T

0
Rε(qε(r), q

′
ε(r)) + R∗ε(qε(r),−DqE(r, qε(r))) dr ≤ C. (3.4)

In particular,
∫ T
0 R0(qε(r), z

′
ε(r)) dr ≤ C, whence (3.3c) by (R0).

The derivation of the L1(0, T ;Rn) estimate for (u′ε)ε similar to (3.3c) clearly does not follow

from (2.8), which only yields
∫ T
0 εα|u′ε(r)|2 dr ≤ C via (3.4) and (Vu). It is indeed more involved,

and, as already mentioned, it strongly relies on the uniform convexity of E with respect to u.
Furthermore, we are able to obtain it only under the simplifying condition that the dissipation
potential Vu in fact does not depend on the state variable q, and under an additional well-
preparedness condition on the data (q0ε)ε, ensuring that the forces DuE(0, q0ε) tend to zero, as
ε ↓ 0, with rate εα.

Proposition 3.2. Let α > 0. Assume (R0), (Vz), (Vu), and (E). In addition, suppose that

DqVu(q) = 0 for all q ∈ Q, (Vu,1)

E ∈ C2([0, T ]× Q) and

∃µ > 0 ∀ (t, q) ∈ [0, T ]× Q : D2
uE(t, q) ≥ µIRn×n (uniform convexity w.r.t. u),

(E1)

and that the initial data (q0ε)ε complying with (3.1) also fulfill

|DuE(0, q0ε)| ≤ Cεα. (3.5)

Then, there exists a constant C > 0 such that for every ε > 0

‖u′ε(t)‖L1(0,T ;Rn) ≤ C. (3.6)

Proof. By (Vu,1) there exists a matrix Vu ∈ Rn×n such that Vu(q) ≡ Vu for all q ∈ Q with

Vu(q;u′) = Vu(u′) :=
1

2
〈Vuu

′, u′〉. (3.7)

Therefore (2.7a) reduces to

εαVuu
′
ε(t) + DuE(t, uε(t), zε(t)) = 0 for a.a. t ∈ (0, T ). (3.8)

We differentiate (3.8) in time, and test the resulting equation by u′ε. Thus we obtain, for almost
all t ∈ (0, T ),

0 = εα〈Vuuε
′′(t), u′ε(t)〉+ 〈D2

uE(t, uε(t), zε(t))[u
′
ε(t)], u

′
ε(t)〉

+ 〈D2
u,zE(t, uε(t), zε(t))[u

′
ε(t)], z

′
ε(t)〉

.
= S1 + S2 + S3,

(3.9)

where D2
u,z denotes the second-order mixed derivative. Observe that

S1 =
εα

2

d

dt
Vu(u′ε), S2 ≥ µ|u′2ε | ≥ µ̃Vu(u′ε),

S3 ≥ −C|u′ε||z′ε| ≥ −C
√

Vu(u′ε)|z′ε|.
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Indeed, to estimate S2 we have used the uniform convexity of E(t, ·, z), and the growth of Vu

from (Vu). The estimate for S3 follows from supt∈(0,T ) |D2
u,zE(t, uε(t), zε(t))| ≤ C, due to (3.3b)

and the fact that D2
u,zE is continuous on [0, T ]× Q, cf. (Vu). We thus infer from (3.9) that

1

2

d

dt
Vu(u′ε(t)) +

µ̃

εα
Vu(u′ε(t)) ≤

C

εα

√
Vu(u′ε(t))|z′ε(t)| for a.a. t ∈ (0, T ),

which rephrases as

νε(t)ν
′
ε(t) +

µ̃

εα
ν2ε (t) ≤ C

εα
νε(t)|z′ε(t)|

where we have used the place-holder νε(t) :=
√

Vu(u′ε(t)). We now argue as in [5] and observe
that, without loss of generality, we may suppose that νε(t) > 0 (otherwise, we replace it by
ν̃ε =

√
νε + δ, which satisfies the same estimate, and then let δ ↓ 0), Hence, we deduce

ν ′ε(t) +
µ̃

εα
νε(t) ≤

C

εα
|z′ε(t)|.

Applying the Gronwall lemma we obtain

νε(t) ≤ C exp

(
− µ̃

εα
t

)
νε(0) +

C

εα

∫ t

0
exp

(
− µ̃

εα
(t− r)

)
|z′ε(r)|dr

.
= aε1(t) + aε2(t) (3.10)

for all t ∈ (0, T ). We integrate the above estimate on (0, T ). Now, observe that (3.5)
guarantees that νε(0) =

√
Vu(u′ε(0)) ≤ C|V uu

′
ε(0)| = Cε−α|DE(0, uε(0))| ≤ C. Hence, we

find ‖aε1‖L1(0,T ) ≤ Cνε(0) ≤ C1. To estimate aε2 we use Young’s convolution inequality giving

‖aε2‖L1(0,T ) = C
εα

∫ T
0

∫ t
0 exp

(
− µ̃

4εα (t− r)
)
|z′ε(r)|dr dt

≤ C
εα

(∫ T
0 exp

(
− µ̃
εα t
)

dt
)(∫ T

0 |z
′
ε(t)|dt

)
≤ C2

where we have exploited the a priori estimate (3.3c) for z′ε. Thus, (3.10) implies (3.6), and we
are done.

4. Limit passage with vanishing viscosity
In this section, we assume that we are given a sequence (qε)ε ⊂ W1,2(0, T ;Q) of solutions to
(2.3), satisfying the initial conditions qε(0) = q0ε , such that estimate (3.2) holds. As we have
shown in Proposition 3.2, the well-preparedness (3.5) of the initial data (q0ε)ε, the condition that
the dissipation potential Vu does not depend on the state q, and the uniform convexity (E1) of
E with respect to u guarantee the validity of (3.2). However, these conditions are not needed
for the vanishing-viscosity analysis. Therefore, hereafter we will no longer impose (3.5), we will
allow for a state-dependent dissipation potential Vu = Vu(q;u′), and we will stay with the basic
conditions (E) on E.

The energy-dissipation principle. Following the variational approach of [8, 13, 14], we will
pass to the limit in (a parameterized version of) the energy identity (2.8).

Preliminarily, let us explicitly calculate the convex-conjugate of the dissipation potential Rε
(2.4).

Lemma 4.1. Assume (R0), (Vz), and (Vu). Then, the Fenchel-Moreau conjugate (2.9) of Rε
is given by

R∗ε(q, ξ) =
1

ε
W∗z(q; ζ) +

1

εα
V∗u(q; η) for all q ∈ Q and ξ = (η, ζ) ∈ Rn+m, (4.1)
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where V∗u(q; ·) is the conjugate of Vu(q; ·), and

W∗z(q; ζ) = min
ω∈K(q)

V∗z(q; ζ − ω) with K(q) := ∂R0(q, 0), (4.2)

V∗z(q; ·) is the conjugate of Vz(q; ·), while W∗z is the conjugate of R0 + Vz.

Proof. Since Rε(q, ·) is given by the sum of a contribution in the sole variable z′ and another in
the sole variable u′, we have

R∗ε(q, ξ) = (εαVu)∗(q, η) + W∗z,ε(q; ζ) for all ξ = (η, ζ) ∈ Rn+m

where we have used the place-holder W∗z,ε(q; ζ) := (R0(q, ·) + εVz(q; ·))∗ (ζ). Now, taking into
account that Vu is quadratic, there holds

(εαVu)∗(q, η) = εαV∗u

(
q,

1

εα
η

)
=

1

εα
V∗u(q; η),

whereas the inf-sup convolution formula (see e.g. [30]) yields W∗z,ε(q; ζ) = 1
εW
∗
z(q; ζ) with W∗z(q; ·)

from (4.2).

In view of (4.1), the energy identity (2.8) rewrites as

E(t, qε(t)) +

∫ t

s
R0(qε(r), z

′
ε(r)) + εVz(qε(r); z

′
ε(r)) + εαVu(qε(r);u

′
ε(r)) dr

+

∫ t

s

1

ε
W∗z(qε(r);−DzE(r, qε(r))) +

1

εα
V∗u(qε(r);−DuE(r, qε(r))) dr

= E(s, qε(s)) +

∫ t

s
∂tE(r, qε(r)) dr.

(4.3)

In fact, the two integral terms on the left-hand side of (4.3) reflect the competition between the
tendency of the system to be governed by viscous dissipation both for the variable z and for the
variable u, and its tendency to fulfill the local stability condition

W∗z(q(t);−DzE(t, q(t))) = 0 i.e. −DzE(t, q(t)) ∈ K(q(t)) for a.a. t ∈ (0, T )

for z, and the equilibrium condition

V∗u(q(t);−DuE(r, q(t))) = 0 i.e. −DuE(t, q(t)) = 0 for a.a. t ∈ (0, T )

for u, cf. also the discussion in Remark 4.4.

The parameterized energy-dissipation principle. We now consider the parameterized
curves (tε, qε) : [0, Sε]→ [0, T ]×Q, where for every ε > 0 the rescaling function tε : [0, Sε]→ [0, T ]
is strictly increasing, and qε(s) = qε(tε(s)). We shall suppose that supε>0 Sε <∞, and that

∃C > 0 ∀ ε > 0 ∀ s ∈ [0, Sε] : t′ε(s) + |q′ε(s)| ≤ C. (4.4)

Remark 4.2. For instance, as in [9, 8] we might choose

tε := σ−1ε with σε(t) :=

∫ t

0

(
1 + |q′ε(r)|

)
dr, (4.5)

and set Sε := σε(T ). In fact, estimate (3.2) ensures that supε Sε <∞. With the choice (4.5) for
tε, the functions (tε, qε) fulfill the normalization condition

t′ε(s) + |q′ε(s)| = 1 for almost all s ∈ (0, Sε).
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For the parameterized curves (tε, qε), the energy-dissipation principle (4.3) reads

E(tε(s2), qε(s2)) +

∫ s2

s1

Mε(qε(r), t
′
ε(r), q

′
ε(r),−DqE(tε(r), qε(r))) dr

= E(tε(s1), qε(s1)) +

∫ s2

s1

∂tE(tε(r), qε(r))t
′
ε(r) dr for all 0 ≤ s1 ≤ s2 ≤ S,

(4.6)

where we have used the dissipation functional

Mε(q, τ, q
′, ξ) = Mε(q, τ, (u

′, z′), (η, ζ))

:= R0(q, z
′) +

ε

τ
Vz(q; z

′) +
εα

τ
Vu(q;u′) +

τ

ε
W∗z(q; ζ) +

τ

εα
V∗u(q; η).

(4.7)

The passage from (4.3) to (4.6) follows from the change of variables t → tε(r), whence
dt → t′ε(r)dr, while q′ε(t) → 1

t′ε(r)
q′ε(r). In order to pass to the limit in (4.6) as ε ↓ 0, it

is crucial to investigate the Γ-convergence properties of the family of functionals (Mε)ε. The
following result reveals that the Γ-limit of (Mε)ε depends on whether the parameter α is above,
equal, or below the threshold value 1. Let us point out that, for α ∈ (0, 1), setting δ = εα we
rewrite Mε as

Mε(q, τ, (u
′, z′), (η, ζ)) = R0(q, z

′) +
δ1/α

τ
Vz(q; z

′) +
δ

τ
Vu(q;u′) +

τ

δ1/α
W∗z(q; ζ) +

τ

δ
V∗u(q; η) (4.8)

with 1/α > 1. It is thus natural to expect that the upcoming results will be specular in the
cases α ∈ (0, 1) and α > 1.

Proposition 4.3. Assume (R0), (Vz), (Vu), and (E). Then, the functionals (Mε)ε Γ-converge
as ε ↓ 0 to M0 : Q× [0,∞)× Q× Rn+m → [0,∞] defined by

M0(q, τ, (u
′, z′), (η, ζ)) := R0(q, z

′) + Mred
0 (q, τ, (u′, z′), (η, ζ)), (4.9)

where for τ > 0 we have

Mred
0 (q, τ, (u′, z′), (η, ζ)) =

{
0 if W∗z(q; ζ) = V∗u(q; η) = 0,
∞ if W∗z(q; ζ) + V∗u(q; η) > 0,

(4.10)

while for τ = 0 we have the following cases:

• For α > 1

Mred
0 (q, 0, (u′, z′), (η, ζ)) =

 2
√

Vu(q;u′)
√
V∗u(q; η) if Vz(q; z

′) = 0,

2
√

Vz(q; z′)
√
W∗z(q; ζ) if V∗u(q; η) = 0,

∞ if Vz(q; z
′)V∗u(q; η) > 0,

(4.11)

• For α = 1

Mred
0 (q, 0, (u′, z′), (η, ζ)) = 2

√
Vz(q; z′) + Vu(q;u′)

√
W∗z(q; ζ) + V∗u(q; η), (4.12)

• For α ∈ (0, 1)

Mred
0 (q, 0, (u′, z′), (η, ζ)) =

 2
√

Vu(q;u′)
√
V∗u(q; η) if W∗z(q; ζ) = 0,

2
√

Vz(q; z′)
√
W∗z(q; ζ) if Vu(q;u′) = 0,

∞ if Vu(q;u′)W∗z(q; ζ) > 0.

(4.13)
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Moreover, if (τε, q
′
ε) ⇀ (τ, q′) in L1(0, S; (0, T )×Q) and if (qε, ξε)→ (q, ξ) in L1(0, S;Q×Rn+m),

then for every 0 ≤ s1 ≤ s2 ≤ S

lim inf
ε↓0

∫ S

0
Mε(qε(s), τε(s), q

′
ε(s), ξε(s)) ds ≥

∫ S

0
M0(q(s), τ(s), q′(s), ξ(s)) ds . (4.14)

Remark 4.4. Let us briefly comment on the expression (4.9) of the Γ-limit M0. To do so, we
rephrase the constraints arising in the switching conditions for the reduced functional Mred

0 , cf.
(4.10), (4.11), and (4.13). Indeed, it follows from (Vz) and (Vu) (cf. (2.6)) that

Vz(q; z
′) = 0 ⇔ z′ = 0, Vu(q;u′) = 0 ⇔ u′ = 0,

V∗u(q; η) = 0 ⇔ η = 0, W∗z(q; ζ) = 0 ⇔ ζ ∈ K(q) = ∂R0(q, 0).

Therefore, from (4.10) we read that for τ > 0 the functional Mred
0 (q, τ, ·, ·) is finite (and indeed

equal to 0) only for η and ζ fulfilling

η = 0, ζ ∈ K(q) .

For τ = 0, in the case α > 1, Mred
0 (q, 0, ·, ·) is finite if and only if either z′ = 0 or η = 0. As we

will see when discussing the physical interpretation of our vanishing-viscosity result, this means
that, at a jump (i.e. when τ = 0), either z′ = 0, i.e. z is frozen, or u fulfills the equilibrium
condition η = DuE(t, u) = 0.

Also in view of (4.8), the switching conditions for α ∈ (0, 1) are specular to the ones for
α > 1 in a generalized sense. In fact, Mred

0 (q, 0, ·, ·) is finite if and only if either u is frozen, or
ζ = DzE(t, z) ∈ K(q), meaning that z fulfills the local stability condition.

Proof of Proposition 4.3. Observe that

Mε(q, τ, (u
′, z′), (η, ζ)) = R0(q, z

′) + Mred
ε (q, τ, (u′, z′), (η, ζ))

with Mred
ε (q, τ, (u′, z′), (η, ζ)) := ε

τVz(q; z
′) + εα

τ Vu(q;u′) + τ
εW
∗
z(q; ζ) + τ

εαV
∗
u(q; η). Since R0 is

continuous with respect to both variables q and z and does not depend on ε, it is clearly sufficient
to prove that the functionals Mred

ε Γ-converge to Mred
0 , namely

Γ- lim inf estimate:

(qε, τε, u
′
ε, z
′
ε, ηε, ζε)→ (q, τ, u′, z′, η, ζ) for ε→ 0

=⇒ Mred
0 (q, τ, (u′, z′), (η, ζ)) ≤ lim inf

ε↓0
Mred
ε (qε, τε, (u

′
ε, z
′
ε), (ηε, ζε)),

(4.15)

Γ- lim sup estimate:

∀ (q, τ, u′, z′, η, ζ) ∃ (qε, τε, u
′
ε, z
′
ε, ηε, ζε)ε :{

(qε, τε, u
′
ε, z
′
ε, ηε, ζε)→ (q, τ, u′, z′, η, ζ) and

Mred
0 (q, τ, (u′, z′), (η, ζ)) ≥ lim supε↓0M

red
ε (qε, τε, (u

′
ε, z
′
ε), (ηε, ζε)).

(4.16)

Preliminarily, observe that minimizing with respect to τ we obtain the lower bound

Mred
ε (q, τ, (u′, z′), (η, ζ)) ≥ 2

√
εVz(q; z′) + εαVu(q;u′)

√
1

ε
W∗z(q; ζ) +

1

εα
V∗u(q; η). (4.17)

In all the three cases α > 1, α = 1, and α ∈ (0, 1), the expression (4.10) of Mred
0 for

τ > 0 can be easily checked. Indeed, for the Γ-lim inf estimate, observe that it is trivial
in the case W∗z(q; ζ) = V∗u(q; η) = 0, as Mred

ε takes positive values for all ε > 0. Suppose
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now that W∗z(q; ζ) + V∗u(q; η) > 0, e.g. that V∗u(q; η) > 0. Now, (qε, ηε) → (q, η) implies that
V∗u(qε; ηε) ≥ c̄ > 0 for sufficiently small ε, and from (4.17) we deduce that

lim inf
ε↓0

Mred
ε (qε, τε, (u

′
ε, z
′
ε), (ηε, ζε)) =∞ = Mred

0 (q, τ, (u′, z′), (η, ζ)) .

The Γ-lim sup estimate follows by taking the recovery sequence (qε, τε, u
′
ε, z
′
ε, ηε, ζε) =

(q, τ, u′, z′, η, ζ). In fact, W∗z(q; ζ) + V∗u(q; η) > 0, then the lim sup-inequality in (4.16) is trivial.
If W∗z(q; ζ) = V∗u(q; η) = 0, (4.16) can be checked straightforwardly.

For α = 1, in the case τ = 0, (4.17) clearly yields the Γ-lim inf estimate, whereas the Γ-lim sup
one can be obtained by with the recovery sequence (qε, τε, u

′
ε, z
′
ε, ηε, ζε) = (q, τ∗ε , u

′, z′, η, ζ) with

τ∗ε = ε

√
Vz(q; z′) + Vu(q;u′)√
W∗z(q; ζ) + V∗u(q; η)

.

For α > 1 and τ = 0, the Γ-lim inf estimate follows taking into account that (4.17) yields

Mred
ε (q, τ, (u′, z′), (η, ζ)) ≥ 2√

εα−1

√
Vz(q; z′)V∗u(q; η). (4.18)

Hence, if both Vz(q; z
′) > 0 and V∗u(q; η) > 0, then lim infε↓0M

red
ε (q, τ, (u′, z′), (η, ζ)) = ∞. In

the case when either Vz(q; z
′) = 0 or V∗u(q; η) = 0, we deduce the Γ-lim inf estimate from (4.17).

For the Γ-lim sup estimate, we again take the recovery sequence (t, q, τ∗∗ε , u
′, z′, η, ζ), where now

τ∗∗ε = ε

√
Vz(q; z′) + εα−1Vu(q;u′)√
W∗z(q; ζ) + 1

εα−1V∗u(q; η)
.

The discussion of the case α ∈ (0, 1) is completely analogous, also in view of (4.8).
Finally, in order to prove (4.14) we use Ioffe’s theorem [31]: We introduce a functional

M : [0,∞)× Q× [0,∞)× Q× Rn+m → [0,∞] subsuming the functionals Mε and M0, viz.

M(ε; q, τ, q′, ξ) :=

{
Mε(q, τ, q

′, ξ) if ε > 0,
M0(q, τ, q

′, ξ) if ε = 0.

Arguing in the very same way as in the proof of [8, Lemma 3.1], it follows that the functional
M is lower semicontinuous on [0,∞)×Q× [0,∞)×Q×Rn+m, and that (τ, q′) 7→M(ε; q, τ, q′, ξ)
is convex for all (ε, q, ξ) ∈ [0,∞)× Q× Rn+m. Hence, Ioffe’s theorem yields

lim inf
ε↓0

∫ S

0
M(ε; qε(s), τε(s), q

′
ε(s), ξε(s)) ds ≥

∫ S

0
M(0; q(s), τ(s), q′(s), ξ(s)) ds,

whence (4.14).

Observe that the functional M0 in (4.9) fulfills for all (q, τ) ∈ Q× [0,∞) the estimate

M0(q, τ, q
′, ξ) ≥ 〈q′, ξ〉 = 〈u′, η〉+ 〈z′, ζ〉 for q′ = (u′, z′) ∈ Q and ξ = (η, ζ) ∈ Rn+m. (4.19)

Indeed, for τ > 0, the inequality is trivial if either V∗u(q; η) > 0 or W∗z(q; ζ) > 0. When both of
them equal 0, then η = 0 and 〈q′, ξ〉 = 〈ζ, z′〉 ≤ R0(q, z

′) = M0(q, τ, q
′, ξ). For τ = 0, e.g. in the

case α > 1 we have, if z′ = 0,

〈q′, ξ〉 = 〈η, u′〉 ≤
√
〈Vu(q)u′, u′〉

√
〈Vu(q)−1η, η〉 = Mred

0 (q, τ, q′, ξ) + 0 = M0(q, τ, q
′, ξ)
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while, if η = 0,

〈q′, ξ〉 = 〈ζ, z′〉 = 〈ζ − ω, z′〉+ 〈ω, z′〉

≤
√
〈Vz(q)z′, z′〉

√
〈Vz(q)−1(ζ−ω), (ζ−ω)〉+ R0(z

′) = M0(q, τ, q
′, ξ)

where we have chosen w ∈ K(q) such that W∗z(q; ζ) = V∗z(q; ζ−ω) = 1
2〈Vz(q)

−1(ζ−ω), (ζ−ω)〉,
and used that 〈ω, z′〉 ≤ R0(z

′).
For the ensuing discussions, the set where (4.19) holds as an equality shall play a crucial

role. We postpone its precise definition right before the statement of Proposition 4.8, cf. (4.30)
ahead.

The vanishing-viscosity result. Theorem 4.5 below states that, up to a subsequence the
parameterized solutions (tε, qε)ε of the (Cauchy problems for the) viscous system (2.3), converge
to a parameterized curve (t, q), complying with the analog of the energy balance (4.6), with M0

in place of Mε.
We postpone after the proof of Theorem 4.5 a thorough analysis of the notion of solution

to the rate-independent system (2.2) thus obtained. Let us instead mention in advance that
the line of the argument for proving the limiting parameterized energy balance (4.22) is by now
quite standard, cf. the proofs of [8, Thm. 3.3], [13, Thm. 5.5]. In fact, the upper energy estimate
(i.e. the inequality ≤ for (4.22)) shall follow from lower semicontinuity arguments, based on the
application of the Ioffe Theorem [31]. The lower energy estimate ≥ will instead ensue from
the chain rule (2.10). We also point out that, for the compactness argument it is actually not
necessary to start from parameterized curves for which estimate (4.4) holds, uniformly w.r.t.
time. In fact, the uniform integrability of the sequence (t′ε, q

′
ε)ε is sufficient, cf. (4.20) below.

Theorem 4.5. Assume (R0), (Vz), (Vu), and (E). Let (qε)ε ⊂ W1,2(0, T ;Q) be a sequence of
solutions to the Cauchy problem for (2.3). Choose nondecreasing surjective parameterizations
tε : [0, Sε]→ [0, T ] and set qε(s) = (uε(s), zε(s)) := qε(tε(s)) for s ∈ [0, Sε]. Suppose that Sε → S
as ε ↓ 0 up to a subsequence, and that there exist q0 ∈ Q and m ∈ L1(0, S) such that qε(0)→ q0,
and

mε := t′ε + |q′ε|⇀m in L1(0, S) as ε ↓ 0. (4.20)

Then, there exist a (not-relabeled) subsequence and a parameterized curve (t, q) ∈
W1,1([0, S]; [0, T ]× Q) such that as ε ↓ 0

(tε, qε)→ (t, q) in C0([0, S]; [0, T ]× Q), (4.21)

t′ + |q′| ≤ m a.e. in (0, S), and (t, q) fulfills the (parameterized) energy identity

E(t(s2), q(s2)) +

∫ s2

s1

M0(q(r), t′(r), q′(r),−DqE(t(r), q(r))) dr

= E(t(s1), q(s1)) +

∫ s2

s1

∂tE(t(r), q(r))t′(r) dr for all 0 ≤ s1 ≤ s2 ≤ S.
(4.22)

Proof. Up to a reparameterization, we may suppose that the curves (tε, qε) are defined on the
fixed time interval [0, S]. We split the proof in three steps.

Step 1: compactness. Observe that for every 0 ≤ s1 ≤ s2 ≤ S

|qε(s1)− qε(s2)| ≤
∫ s2

s1

|q′ε(s)| ds ≤
∫ s2

s1

mε(s) ds . (4.23)
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Since (qε(0))ε is bounded, we deduce from (4.23) that (qε)ε ⊂ C0([0, S];Q) is bounded as
well. What is more, as the family (mε)ε is uniformly integrable (4.20), (qε)ε complies with
the equicontinuity condition of the Ascoli-Arzelà Theorem and so does (tε)ε, by the analog
of estimate (4.23). Hence, (4.21) follows. Taking into account that E ∈ C1([0, T ] × Q), we
immediately conclude from (4.21) that

E(tε, qε)→ E(t, q), DqE(tε, qε)→ DqE(t, q), ∂tE(tε, qε)→ ∂tE(t, q) uniformly on [0, S]. (4.24)

Furthermore, (4.20) also yields that the sequences (t′ε)ε and (q′ε)ε are uniformly integrable. Thus,
by the Pettis Theorem, up to a further extraction we find

t′ε ⇀ t′ in L1(0, S), q′ε ⇀ q′ in L1(0, S;Q), (4.25)

whence t′ + |q′| ≤ m a.e. in (0, S).

Step 2: upper energy estimate. We now take the limit as ε ↓ 0 of the (parameterized) energy-
dissipation principle (4.6) for every 0 ≤ s1 ≤ s2 ≤ S:

E(t(s2), q(s2)) +

∫ s2

s1

M0(q(r), t′(r), q′(r),−DqE(t(r), q(r))) dr

(1)

≤ lim
ε↓0

E(tε(s2), qε(s2)) + lim inf
ε↓0

∫ s2

s1

Mε(qε(r), t
′
ε(r), q

′
ε(r),−DqE(tε(r), qε(r))) dr

= lim
ε↓0

E(tε(s1), qε(s1)) + lim
ε↓0

∫ s2

s1

∂tE(tε(r), qε(r))t
′
ε(r) dr

(2)
= E(t(s1), q(s1)) +

∫ s2

s1

∂tE(t(r), q(r))t′(r) dr ,

(4.26)

where (1) follows from the energy convergence in (4.24) and the previously proved (4.14), and (2)
from (4.24), again, combined with the first of (4.25). This concludes the upper energy estimate.

Step 3: lower energy estimate. We have for all 0 ≤ s1 ≤ s2 ≤ S that

E(t(s1), q(s1)) +

∫ s2

s1

∂tE(t(r), q(r))t′(r) dr

(1)
= E(t(s2), q(s2)) +

∫ s2

s1

〈−DqE(t(r), q(r)), q′(r)〉dr

(2)

≤ E(t(s2), q(s2)) +

∫ s2

s1

M0(q(r), t′(r), q′(r),−DqE(t(r), q(r))) dr ,

(4.27)

where (1) follows from the chain rule, and (2) is due to inequality (4.19). In this way, we conclude
(4.22). Finally, combining (4.26) and (4.27) it is easy to deduce that

lim
ε↓0

s2∫
s1

Mε(qε(r), t
′
ε(r), q

′
ε(r),−DqE(tε(r), qε(r))) dr =

s2∫
s1

M0(q(r), t′(r), q′(r),−DqE(t(r), q(r))) dr

for all 0 ≤ s1 ≤ s2 ≤ S, whence
∫ s2
s1

R0(qε(r), z
′
ε(r)) dr →

∫ s2
s1

R0(q(r), z′(r)) dr.
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Parameterized Balanced Viscosity solutions. Let us now gain further insight into the
notion of solution to system (1.1) arising from the vanishing-viscosity limit. First of all, we fix
its definition.

Definition 4.6. Let (R0,Vz,Vu,E) comply with (R0), (Vz), (Vu), and (E). A curve (t, q) ∈
W1,1([0, S]; [0, T ]×Q) is called a parameterized Balanced Viscosity (pBV, for short) solution to
the rate-independent system (Q,E,R0 + εVz + εαVu) if t : [0, S] → [0, T ] is nondecreasing, and
the pair (t, q) complies with the energy-dissipation principle (4.22) for all 0 ≤ s1 ≤ s2 ≤ S.

Furthermore, (t, q) is called
• non-degenerate, if

t′(s) + |q′(s)| > 0 for a.a. s ∈ (0, S); (4.28)

• surjective, if t : [0, S]→ [0, T ] is surjective.

The name parameterized Balanced Viscosity solutions derives from the fact that the
dissipation potential M0 (cf. (4.9)) featuring in (4.22) is defined in a nontrivial way from the
three dissipation potentials R0, Vu, and Vz in such a manner that the subtle balance between
the different effects is obtained in the limit ε ↓ 0.

Remark 4.7. Observe that, even in the case when the function m in (4.20) is a.e. strictly
positive, Theorem 4.5 does not guarantee the existence of non-degenerate pBV solutions.
However, any degenerate pBV solution (t, q) can be reparameterized to a non-degenerate one
(̃t, q̃) : [0, S̃]→ [0, T ]× Q, even fulfilling the normalization condition

t̃′(σ) + q̃′(σ) = 1 for a.a. σ ∈ (0, S̃) . (4.29)

Indeed, following [8, Rmk. 2], starting from a (possibly degenerate) solution (t, q), we set

σ(s) :=

∫ s

0
t′(r) + |q′(r)|dr and S̃ := σ(S),

and define (̃t(σ), q̃(σ)) := (t(s), q(s)) if σ = σ(s). Then, the very same calculations as in [8,
Rmk. 2] lead to (4.29).

We conclude this section with a characterization of pBV solutions in the same spirit as [8,
Prop. 2] and [13, Prop. 5.3], [14, Cor. 4.5]. We show that the energy identity (4.22) defining the
concept of pBV solutions is equivalent to the corresponding energy inequality on the interval
[0, S], and to the energy inequality in a differential form. Finally, (4.31) below provides a further
reformulation of this solution concept which involves the contact set (cf. [13, 14])

Σ(q) := {(τ, q′, ξ) ∈ [0,∞)× Q× Rn+m : M0(q, τ, q
′, ξ) = 〈q′, ξ〉} (4.30)

Observe that for all q ∈ Q the set Σ(q) is closed, as the functional M0(q, ·, ·, ·) is lower
semicontinuous. In Proposition 5.1 we will provide the explicit representation of Σ(q). This and
(4.31) we will be at the core of the reformulation of pBV solutions in terms of subdifferential
inclusions, which we will discuss in Sec. 5.

Proposition 4.8. Let (R0,Vz,Vu,E) comply with (R0), (Vz), (Vu), and (E). A curve (t, q) ∈
W1,1([0, S]; [0, T ] × Q), with t nondecreasing, is a pBV solution to the rate-independent system
(Q,E,R0 + εVz + εαVu) if and only if one of the following equivalent conditions is satisfied:

(i) (4.22) holds as an inequality on (0, S), i.e.

E(t(S), q(S)) +

∫ S

0
M0(q(r), t′(r), q′(r),−DqE(t(r), q(r))) dr

≤ E(t(0), q(0)) +

∫ S

0
∂tE(t(r), q(r))t′(r) dr;
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(ii) the above energy inequality holds in the differential form d
dsE(t, q)+M0(q, t

′, q′,−DqE(t, q)) ≤
∂tE(t, q)t′ a.e. in (0, S);

(iii) the triple (t′, q′,−DqE(t, q)) belongs to the contact set, i.e.

(t′(s), q′(s),−DqE(t(s), q(s))) ∈ Σ(q(s)) for a.a. s ∈ (0, S). (4.31)

The proof of Proposition 4.8 is omitted: it follows by exploiting the chain rule (2.10), with
arguments akin to those in the proof of Theorem 4.5, see also [8, Prop. 2] and [13, Prop. 5.3],
[14, Cor. 4.5].

5. Physical interpretation
The following result provides a thorough description of the (closed) contact set Σ(q), cf. (4.30).
As we will see, the representation of Σ(q) is substantially different in the three cases α > 1, α = 1,
and α ∈ (0, 1). That is why, in Proposition 5.1 below we will use the notation Σα>1(q), Σα=1(q),
and Σα∈(0,1)(q). We will prove that these sets are given by the union of subsets describing the
various evolution regimes for the variables u and z. The notation for these subsets will be of
the form

ArBs with A,B ∈ {E,R,V,B} and r, s ∈ {u, z}.

The letters E,R,V,B stand for Equilibrated, Rate-independent, Viscous, and Blocked,
respectively. For instance, EuRz is the set of (τ, q′, ξ) corresponding to equilibrium for u and rate-
independent evolution for z, cf. (5.2) below; we postpone more comments after the statement
of Proposition 5.1. Observe that all of these sets depend on the state variable q, as does Σ(q).
However, for simplicity we will not highlight this in their notation. In their description we shall
always refer to the representation q′ = (u′, z′) for the velocity variable, and ξ = (η, ζ) for the
force variable.

Proposition 5.1. Assume (R0), (Vz), (Vu), and (E). Then, we have the following results:
Case α > 1: The contact set is given by

Σα>1(q) = EuRz ∪VuBz ∪ EuVz with (5.1)

EuRz := {(τ, q′, ξ) : τ > 0, q′ = (u′, z′), ξ = (0, ζ) and ∂R0(q, z
′) 3 ζ}, (5.2)

VuBz := {(τ, q′, ξ) : (τ, q′, ξ) = (0, (u′, 0), (η, ζ)) and ∃ θu ∈ [0, 1] : θuVu(q)u′ = (1−θu)η}, (5.3)

EuVz := {(τ, q′, ξ) : τ = 0, q′ = (u′, z′), ξ = (0, ζ) and

∃ θz ∈ [0, 1] : (1−θz)∂R0(q, z
′) + θzVz(q)z

′ 3 (1−θz)ζ}.
(5.4)

Case α = 1: The contact set is given by

Σα=1(q) = EuRz ∪VuVz with (5.5)

VuVz :=

{
(τ, q′, ξ) : τ = 0 and ∃ θ ∈ [0, 1] :

{
θVu(q)u′ = (1−θ)η,
(1−θ)∂R0(q, z

′) + θVz(q)z
′ 3 (1−θ)ζ

}
. (5.6)

Case α ∈ (0, 1): The contact set is given by

Σα∈(0,1)(q) = EuRz ∪ BuVz ∪VuRz with (5.7)

BuVz := {(τ, q′, ξ) : τ = 0, q′ = (0, z′), ξ = (η, ζ) and

∃ θz ∈ [0, 1] : (1−θz)∂R0(q, z
′) + θzVz(q)z

′ 3 (1−θz)ζ},
(5.8)

VuRz :=

{
(τ, q′, ξ) : (τ, q′, ξ) = (0, (u′, z′), (η, ζ)),

{ ∃ θu ∈ [0, 1] : θuVu(q)u
′ = (1−θu)η,

and ∂R0(q, z′) 3 ζ

}
. (5.9)
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As (4.31) reveals, the contact set encompasses all the relevant information on the evolution of a
parameterized Balanced Viscosity solution. The form of the sets EuRz, VuBz . . . which constitute
the contact set is strictly related to the mechanical interpretation of pBV solutions that shall
be explored at the end of this section. Let us just explain here that
• the set EuRz corresponds to equilibrium for the variable u (as η = 0), and a stick-slip regime

for z, which evolves rate-independently as expressed by ∂R0(q, z
′) 3 ζ. Observe that the

stationary state u′ = z′ = 0 is also encompassed.
• The set VuBz corresponds to the case in which the variable u still has to relax to an

equilibrium and thus is governed by a fast dynamics at a jump τ = 0, while z is “blocked
by viscosity” and thus stays constant (z′ = 0).
• The set EuVz corresponds to the regime in which z evolves according to viscosity at a jump
τ = 0, and u follows z in such a way that it is at an equilibrium (η = 0).

• The set VuVz corresponds to the case where the evolution of the system at a jump τ = 0 is
governed by viscosity both in u and in z.
• The set BuVz encompasses the case in which the variable z at a jump τ = 0 evolves according

to viscosity, while u is blocked by viscosity (u′ = 0).
• The set VuRz describes viscous evolution for u and rate-independent evolution for z.

Remark 5.2. Let us stress once more that, as mentioned in advance, in the vanishing-viscosity
limit the evolution regimes for α > 1 and α ∈ (0, 1) mirror each other. Indeed, formulae (5.1)
and (5.7) are specular, up to observing that the analog of the equilibrium regime Eu is indeed
the rate-independent regime Rz, see also Figure 5.1.

Proof of Proposition 5.1. In all the three cases α > 1, α = 1, and α ∈ (0, 1), for τ > 0 the
contact condition M0(q, τ, q

′, ξ) = 〈ξ, q′〉 can hold only if the constraints η = 0 and ζ ∈ K(q)
are satisfied. Then, M0(q, τ, q

′, ξ) = 〈ξ, q′〉 reduces to R0(q, z
′) = 〈ζ, z′〉. Since ζ ∈ K(q), this is

equivalent to ζ ∈ ∂R0(q, z
′) by (2.5). This gives the set EuRz, which contributes to the contact

set Σ(q) in the three cases α > 1, α = 1, and α ∈ (0, 1).
For α = 1, observe that in the case τ = 0 the contact condition is

R0(q, z
′) + 2

√
Vz(q; z′) + Vu(q;u′)

√
W∗z(q; ζ) + V∗u(q; η) = 〈ζ, z′〉+ 〈η, u′〉. (5.10)

Let us first address the case in which σ1 :=
√

Vz(q; z′) + Vu(q;u′) = 0 or σ2 :=√
W∗z(q; ζ) + V∗u(q; η) = 0. The former case corresponds to the stationary state u′ = z′ = 0,

which means θ = 1 in (5.6). The latter to W∗z(q; ζ) = 0 (if and only if ζ ∈ K(q)) and η = 0.
Hence (5.10) becomes R0(q, z

′) = 〈ζ, z′〉, whence ζ ∈ ∂R0(q, z
′) by (2.5), again. This corresponds

to θ = 0 in (5.6). If σ1σ2 > 0, then we rewrite 2σ1σ2 as λσ21 + 1
λσ

2
2, with λ > 0 given by λ = σ2

σ1
.

With such λ, (5.10) rewrites as

R0(q, z
′) + λ(Vz(q; z

′) + Vu(q;u′)) +
1

λ
(W∗z(q; ζ) + V∗u(q; η)) = 〈ζ, z′〉+ 〈η, u′〉.

Upon multiplying both sides by λ, using that Vz and Vu are positively homogeneous of degree
2, and rearranging terms, we get

R0(q, λz
′) + Vz(q;λz

′) + W∗z(q; ζ)− 〈ζ, λz′〉 = 〈η, λu′〉 − Vu(q;λu′)− V∗u(q; η).

By the Fenchel-Moreau equivalence, this gives

Vu(q)(λu′) = η,
∂R0(q, λz

′) + Vz(q)(λz
′) 3 ζ
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with λ > 0. Then, (5.6) follows with θ ∈ (0, 1) such that λ = θ
1−θ . All in all, for α = 1 we

have proved that, if (τ, q′, ξ) ∈ Σα=1(q), then either (τ, q′, ξ) ∈ EuRz, or (τ, q′, ξ) ∈ VuVz. This
concludes the proof of (5.5) for Σα=1(q).

In the case α > 1 and τ = 0, M0(q, τ, q
′, ξ) is finite if and only if either z′ = 0, or η = 0. In

the former case, the contact condition reduces to
√
〈Vu(q)u′, u′〉

√
〈Vu(q)−1η, η〉 = 〈η, u′〉, which

is equivalent to the fact that there exists θu ∈ [0, 1] with θuVu(q)u′ = (1− θu)η. This yields the
set VuBz. In the latter case, the contact condition rephrases as

R0(q, z
′) +

√
〈Vz(q)z′, z′〉

√
〈Vz(q)−1(ζ−ω), ζ−ω〉 = 〈ζ, z′〉 = 〈ω, z′〉+ 〈ζ−ω, z′〉,

with ω ∈ K(q) such that W∗z(q; ζ) = 1
2〈Vz(q)

−1(ζ−ω), ζ−ω〉. It is immediate to check that the
above chain of equalities implies

ω ∈ ∂R0(q, z
′) and (1− θz)(ζ−ω) = θzVz(q)z

′ for some θz ∈ [0, 1].

This yields the set EuVz. All in all, in the case α > 1 we have proved that, if (τ, q′, ξ) ∈ Σα>1(q),
then either (τ, q′, ξ) ∈ EuRz, or (τ, q′, ξ) ∈ VuBz, or (τ, q′, ξ) ∈ EuVz. This concludes (5.1).

The proof of (5.7) follows the very same lines and is thus omitted.

The main result of this paper is the following theorem, which is in fact a direct consequence
of the characterization (4.31) of pBV solutions in terms of the contact set, and of Proposition
5.1. Observe that, we confine ourselves to non-degenerate pBV solutions only. This is not
restrictive, in view of Remark 4.7.

Theorem 5.3 (Reformulation as a system of subdifferential inclusions). Assume (R0), (Vz),
(Vu), and (E). A curve (t, q) ∈W1,1([0, S]; [0, T ]×Q) with nondecreasing t is a non-degenerate
parameterized Balanced Viscosity solution to the rate-independent system (Q,E,R0+εVz+εαVu)
if and only if t′+ |q′| > 0 a.e. in (0, S) and there exist two Borel functions θu, θz : [0, S]→ [0, 1]
such that the pair (t, q) with q = (u, z) satisfies the system of equations for a.a. s ∈ (0, S):

θu(s)Vu(q(s))u′(s) + (1−θu(s)) DuE(t(s), u(s), z(s)) 3 0,

(1−θz(s)) ∂R0(q(s), z′(s)) + θz(s)Vz(q(s))z′(s) + (1−θz(s)) DzE(t(s), u(s), z(s)) 3 0,
(5.11)

with
t′(s) θu(s) = t′(s) θz(s) = 0 (5.12)

and the following additional conditions depending on α:

α > 1: θu(s) (1−θz(s)) = 0; (5.13a)

α = 1: θu(s) = θz(s); (5.13b)

α ∈ (0, 1): θz(s) (1−θu(s)) = 0. (5.13c)

Figure 5.1 displays the structure of the allowed values for the parameters (t′, θu, θz) depending
on the value of α.

Remark 5.4. Observe that conditions (5.13a) and (5.13c) are specular (cf. Remark 5.2),
revealing once more that the evolution regimes for α > 1 and α < 1 reflect each other.
Nonetheless, a major difference occurs in that, under suitable conditions, for α > 1 the regime
VuBz only occurs at the beginning, when u relaxes fast to equilibrium, cf. Proposition 5.5.
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Figure 5.1. The switching between the different regimes, depending on the cases α < 1, α = 1,
and α > 1, are displayed via the allowed combinations of the triples (t′, θu, θz).

Finally, let us get further insight into the mechanical interpretation of system (5.11), with
the constraints (5.12) and (5.13a)–(5.13c). Preliminarily, let us point out that, as in the case of
parameterized solutions to the rate-independent system

∂R0(z(t), z
′(t)) + DqI(t, z(t)) 3 0 in (0, T ), (5.14)

in the sole variable z, we have t′(s) = 0 if and only if the system is jumping in the (slow)
external time scale. Therefore, from (5.12) we gather that, in all of the three cases α > 1,
α = 1, and α ∈ (0, 1), when the system does not jump, then it is either in the sticking regime
(i.e. u′ = z′ = 0), or in the sliding regime, namely the evolution of z is purely rate-independent
(i.e. ∂R0(q, z

′) + DzE(t, q) 3 0), and u follows z in such a way that it is at an equilibrium (i.e.
−DuE(t, q) = 0). It is the description of the system behavior at jumps that significantly differs
for α > 1, α = 1, and α ∈ (0, 1).

Case α > 1: fast relaxation of u. Here u relaxes faster to equilibrium than z. With (5.12)
and (5.13a) we are imposing at a jump that either z′ = 0 (which follows from θz = 1, i.e. VuBz)
or u is at equilibrium (corresponding to θu = 0, i.e. EuVz). In fact, z cannot change until u has
relaxed to equilibrium. When u has reached the equilibrium, then z may have either a sliding
jump (i.e. θz = 0), or a viscous jump (θz ∈ (0, 1)).

Our next result shows that, in fact, under the condition that the energy E is uniformly
convex with respect to the variable u (cf. Proposition 3.2), after an initial phase in which z
is constant and u relaxes to an equilibrium evolving by viscosity (i.e. the solution is in regime
VuBz), u never leaves the equilibrium afterwards. In that case the evolution of the system is
completely described by z, which turns out to be a parameterized Balanced Viscosity solution to
the rate-independent system driven by the reduced energy functional obtained minimizing out
the variable u.

Proposition 5.5. Assume (R0), (Vz), (Vu), and (E). Additionally, suppose that E complies
with the uniform convexity (E1), and denote by u = M(t, z) the unique solution of DuE(t, u, z) =
0, i.e. the minimizer of E(t, ·, z). Let (t, q) ∈W1,1([0, S]; [0, T ]×Q) be a parameterized Balanced
Viscosity solution to the rate-independent system (Q,E,R0 + εVz + εαVu) with α > 1. Set

S := {s ∈ [0, S] : DuE(t(s), q(s)) = 0}. (5.15)

Then, S is either empty or it has the form [s∗, S] for some s∗ ∈ [0, S].
(a) Assume s∗ > 0, then for s ∈ [0, s∗) = [0, S] \ S we have t(s) = t(0) and z(s) = z(0),

whereas u is a solution to the reparameterized the gradient flow for (Rn,E(t(0), ·, z(0)),Vu)
(regime VuBz), namely

0 = θu(s)Vu(u(s), z(0))u̇(s) + (1−θu(s)) DuE(t(0), u(s), z(0)) with u(0) 6= M(t(0), z(0)). (5.16)
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(b) Assume S = [s∗, S] with s∗ < S, then for s ∈ [s∗, S] we have u(s) = M(t(s), z(s)) whereas
the pair (t, z) is a parameterized Balanced Viscosity solution to the reduced rate-independent
system (Rm, I,R0 + εVz) with the reduced energy functional I : [0, T ] × Rm → R; (t, z) 7→
minu∈Rn E(t, u, z) = E(t,M(t, z), z), which corresponds to the regimes EuVz and EuRz.

Proof. To avoid overloaded notation we will often omit the state-dependence of the functions
Vu and Vz. For easy reference we repeat all the conditions for a BV solution (t, q) (cf. Theorem
5.3), in the case α > 1:

(i) 0 = θuVuu
′ + (1−θu)DuE(t, u, z), (ii) 0 ∈ (1−θz)∂R0(q, z

′) + θzVzz
′ + (1−θz)DzE(t, u, z),

(iii) t′θu = 0, (iv) t′θz = 0, (v) θu (1−θz) = 0, (vi) t′ + |u′|+ |z′| > 0,

which have to hold for a.a. s ∈ (0, S).
Step 1: By the continuity of (t, z) and DuE the set S is closed, hence its complement is

relatively open. Consider an interval (s1, s2) not intersecting with S. Using (i) we find θu > 0
a.e. in (s1, s2). Hence, (iii) implies t′ = 0 a.e., and we obtain t(s) = t(s1) for s ∈ [s1, s2]. By (v)
we find θz = 1 a.e. Now, (ii) implies z′ = 0 a.e., which implies z(s) = z(s1) for s ∈ [s1, s2]. From
(vi) we conclude u′ 6= 0 a.e. Thus, we summarize

t(s) = t(s1), z(s) = z(s1), 0 = Vu(u(s), z(s1))u
′(s) + λ(s)DuE(t(s1), u(s), z(s1)),

where λ(s) = (1−θu(s))/θu(s) ∈ (0,∞) a.e. In particular, u satisfies (5.16). From u ∈
W1,1([0, S];Rm) and (i) we obtain λ ∈ L1(s1, s2). Setting τ(s) =

∫ s
s1
λ(σ) dσ and defining

the inverse ŝ via s = ŝ(τ) we find ŝ′(τ) > 0 and ŝ ∈ W 1,1(0, τ(s2)). Moreover, the function
û : τ 7→ u(ŝ(τ)) is a solution of the gradient flow

0 = Vu(û(τ), z(s1))û
′(τ) + DuE(t(s1), û(τ), z(s1)). (5.17)

Furthermore, we see that s 7→ E(t(s1), u(s), z(s1)) is strictly decreasing on [s1, s2], since its time
derivative is given by −〈u′(s),Vuu′(s)〉/λ(s) which is negative a.e.

Step 2: Since S is closed the complement is an at most countable disjoint union of intervals
of the form (s1, S], (s2, s3), [0, s4), or [0, S], which are maximal in the sense that they cannot be
extended without meeting S. Thus, for the “open” sides sj this means sj ∈ S. In the first two
cases this implies u(sj) = M(t(sj), z(sj)), i.e. we start a gradient flow with initial condition in
the global minimizer. Hence, the solution stays constant for all future times, i.e. u(s) = u(s1,2)
for s ∈ (s1, S] or (s2, s3), respectively. But this contradicts the fact that s 7→ E(t(sj), u(s), z(sj))
is strictly decreasing (cf. Step 1). Hence, the first two cases cannot occur, and we conclude
S = [s∗, S] with s∗ = s4 or S = ∅. In particular, assertion (a) is established.

Step 3: To show (b) assume s ∈ S = [s∗, S], then u(s) = M(t(s), z(s)) by the definition of S.

Observe that DzI(t, z) = DzE(t,M(t, z), z)+DzM(t, z)TDuE(t,M(t, z), z) = DzE(t,M(t, z), z)+
0. Thus, (t, z) solves

(ii)’ 0 ∈ (1−θz)∂R0(z, z
′) + θzVzz

′ + (1−θz)DzI(t, z), (iv)’ t′θz = 0, (vi)’ t′ + |z′| > 0,

which proves that (t, z) is a BV solution of the reduced system. For the latter relation note that
t′(s) + |z′(s)| = 0 implies u′(s) = d

dsM(t(s), z(s)) = 0 so that (vi)’ follows from (vi).

Our approach in Step 1 of the above proof uses the qualitative ideas from [32, 33], but our
reduction to the simpler convex case makes the analysis much easier.

Case α = 1: comparable relaxation times, Here u and z relax at the same rate. At a jump,
the system may switch to the viscous regime VuVz, where both in the evolution of u, and in the
evolution for z, viscous dissipation intervenes, modulated by the same coefficient θ = θu = θz.
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t

Figure 6.1. Solutions for (6.1) for the cases α = 2 (blue), α = 1 (green), and α = 1/2 (red).

Case α ∈ (0, 1): fast relaxation of z. Here z relaxes faster than u, and jumps in the z-

component are faster than jumps in the u-component. If z jumps (possibly governed by viscous
dissipation), than u stays fixed, i.e. u is blocked while z moves viscously (regime BuVz). But then
u has still to relax to equilibrium, and it will do it on a faster scale than the rate-independent
motion of z, if z stays in locally stable states (regime VuRz). Finally, full rate-independent
behavior in the regime EuRz will occur, where t′(s) > 0. Unlike in the case α > 1, all three
regimes may occur more than once in the evolution of the system, see Section 6.2 for an example.

6. Examples
To illustrate the difference between the three limit models (namely for α > 1, α = 1, and
α ∈ (0, 1)), we discuss two examples. The first one treats a quadratic energy and emphasizes
the different initial behavior before the solution converges to a truly rate-independent regime. In
the second example we show that solutions that start in a rate-independent regime and coincide
for the three different limit models may separate if viscous jumps start, leading to different
rate-independent behavior afterwards.

6.1. Initial relaxation for a system with quadratic energy
We consider the energy functional E(t, u, z) = 1

2(u− z)2 + 1
2z

2 − tu and trivial viscous energies
leading to the ODE system{

0 = εαu̇+ u− z − t,
0 ∈ Sign(ż) + εż + 2z − u with (u(0), z(0)) = (2,−3/2). (6.1)

We show simulations for the three cases α = 2 (blue), α = 1 (green), and α = 1/2 (red) with
sufficiently small ε (typically 0.001 . . . 0.03). The components u and z as functions of time are
depicted in Figure 6.1.

However, to detect different jump behavior at t ≈ 0 it is advantageous to look at the
parameterized solutions, which are depicted in Figure 6.2, showing (t, q) for the three different
cases. The parameterization was calculated using ṡ(t) = max{0.5, |u̇(t)|, ż(t)|}. In the
parameterized form we fully see the structure of the jump for t ≈ 0. For α = 2 we obtain
first a jump from the initial datum (u, z) = (2,−1.5) to (u, z) = (−1.5,−1.5) on the timescale
ε2, which is the regime VuBz. Then, u is equilibrated, and a jump to (−1,−1) along the
diagonal u = z occurs on the timescale ε, which is the regime EuVz. Finally, the solution finds
the rate-independent regime EuRz with (u(t), z(t)) = qri(t) := (2t−1, t−1).

For α = 1/2 the solution first jumps to (2, 0.5) on the time scale ε, which is the regime BuVz.

Next, there is a jump to (0.5, 0.5) in the time scale ε1/2, which is regime VuRz. Then, the
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Figure 6.2. Solutions (t, u, z) for (6.1) with dotted t, full u, and dashed z. Left α = 2, middle
α = 1, right α = 1/2.
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Figure 6.3. Solutions (z(t), u(t)) for (6.1). The dotted line is the diagonal u = z, while the
yellow area is the locally stable region |2z−u| ≤ 1.

rate-independent regime EuRz starts, namely via (u(t), z(t)) = (t−0.5, 0.5) for t ∈ ]0, 1.5] and
qri for t > 1.5.

The behavior for α = 1 is intermediate: the jump occurs along a nonlinear curve in regime
VuVz, and qri is joined for t ≥ t∗ ≈ 0.7, which is regime EuRz.

The different behavior and the different regimes are also nicely seen by plotting the
trajectories in the (u, z)-plane, see Figure 6.3, where the three different cases for α are depicted.
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Figure 6.4. Solutions for (6.2): left u(t) and right z(t)

6.2. Different jumps starting from the rate-independent regime
Finally we provide an example where the jumps start out of a rate-independent motion, i.e. we
first have the regime EuRz, and then the system becomes unstable and develops a jump. For
this purpose we use the nonconvex energy

E(t, u, z) =
1

2
(u−g(z))2 + F (z)− tu with g(z) = 4z3 − 4z

and F ′(z) = −1 + (z+1)2
(
−40 + 10(z+1)2 + 38e−10(z+0.5)2

)
.

Using the standard viscous potentials as above, the ODE system reads{
0 = εαu̇+ u− g(z)− t,
0 ∈ Sign(ż) + εż + F ′(z) + g′(z)(g(z)−u)

with (u(−0.2), z(−0.2)) = (−2.4,−1.2). (6.2)

Figure 6.4 shows simulation results of u(t) and z(t) for the three cases α = 2 (blue), α = 1
(green), and α = 1/2 (red) with sufficiently small ε. We see that the solutions stay together for
t ∈ [−0.2,−0.1], which is exactly the time they stay in regime EuRz. Then, in all three cases
a jump develops, but this is quite different for different α. In Figure 6.5 we provide graphics
of the same solutions, but now in the reparameterized form (t, u, z) for the three α-values 2, 1,
and 1/2, where again the parameterization s is chosen such that ṡ(t) = max{0.5, |u̇(t)|, ż(t)|}.
However, for this example numerical instabilities prevented us from taking ε small enough to
have a better separation of time scales. Even in the viscous regimes we still see t′ > 0 but small.
Nevertheless, Figure 6.5 clearly shows the different regimes.

Figure 6.6 shows the trajectories in the (z, u)-plane.

Acknowledgments
A.M. has been partially supported by DFG via SFB 1114, subproject C5. R.R. and G.S. have
been partially supported by a MIUR-PRIN’10-11 grant for the project “Calculus of Variations”.
R.R. also acknowledges support from the Gruppo Nazionale per l’Analisi Matematica, la
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[12] Mielke A, Rossi R and Savaré G 2013 Nonsmooth analysis of doubly nonlinear equations Calc. Var. Partial
Differential Equations 46 253–310
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